Suppr超能文献

原子级薄的非线性过渡金属二硫属化物全息图

Atomically Thin Nonlinear Transition Metal Dichalcogenide Holograms.

作者信息

Dasgupta Arindam, Gao Jie, Yang Xiaodong

机构信息

Department of Mechanical and Aerospace Engineering , Missouri University of Science and Technology , Rolla , Missouri 65409 , United States.

出版信息

Nano Lett. 2019 Sep 11;19(9):6511-6516. doi: 10.1021/acs.nanolett.9b02740. Epub 2019 Aug 20.

Abstract

Nonlinear holography enables optical beam generation and holographic image reconstruction at new frequencies other than the excitation fundamental frequency, providing pathways toward unprecedented applications in optical information processing and data security. So far, plasmonic metasurfaces with the thickness of tens of nanometers have been mostly adopted for realizing nonlinear holograms with the potential of on-chip integration but suffering from low conversion efficiency and high absorption loss. Here, we report a nonlinear transition metal dichalcogenide (TMD) hologram with high conversion efficiency and atomic thickness made of only single nanopatterned tungsten disulfide (WS) monolayer, for producing optical vortex beams and Airy beams as well as reconstructing complex holographic images at the second harmonic (SH) frequency. Our concept of nonlinear TMD holograms paves the way toward not only the understanding of light-matter interactions at the atomic level but the integration of functional TMD-based devices with atomic thickness into the next-generation photonic circuits for optical communication, high-density optical data storage, and information security.

摘要

非线性全息术能够在激发基频以外的新频率上产生光束并重建全息图像,为光学信息处理和数据安全方面的前所未有的应用提供了途径。到目前为止,几十纳米厚的等离子体超表面大多被用于实现具有片上集成潜力的非线性全息图,但存在转换效率低和吸收损耗高的问题。在此,我们报道了一种由单个纳米图案化的二硫化钨(WS)单层制成的具有高转换效率和原子厚度的非线性过渡金属二硫属化物(TMD)全息图,用于产生光学涡旋光束和艾里光束以及在二次谐波(SH)频率下重建复杂全息图像。我们的非线性TMD全息图概念不仅为在原子水平上理解光与物质相互作用铺平了道路,而且为将具有原子厚度的基于TMD的功能器件集成到用于光通信、高密度光数据存储和信息安全的下一代光子电路中铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验