Shi Jianwei, Wu Xianxin, Wu Keming, Zhang Shuai, Sui Xinyu, Du Wenna, Yue Shuai, Liang Yin, Jiang Chuanxiu, Wang Zhuo, Wang Wenxiang, Liu Luqi, Wu Bo, Zhang Qing, Huang Yuan, Qiu Cheng-Wei, Liu Xinfeng
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.
University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
ACS Nano. 2022 Sep 27;16(9):13933-13941. doi: 10.1021/acsnano.2c03033. Epub 2022 Aug 19.
Two-dimensional transition metal dichalcogenides (TMDs) possess large second-order optical nonlinearity, making them ideal candidates for miniaturized on-chip frequency conversion devices, all-optical interconnection, and optoelectronic integration components. However, limited by subnanometer thickness, the monolayer TMD exhibits low second harmonic generation (SHG) conversion efficiency (<0.1%) and poor directionality, which hinders their practical applications. Herein, we proposed a Fabry-Pérot (F-P) cavity formed by coupling an atomically thin WS film with a silicon hole matrix to enhance the SH emission. A maximum enhancement (∼1580 times) is achieved by tuning the excitation wavelength to be resonant with the microcavity modes. The giant enhancement is attributed to the strong electric field enhancement in the F-P cavity and the oscillator strength enhancement of excitons from suspended WS. Moreover, directional SH emission (divergence angle ∼5°) is obtained benefiting from the resonance of the F-P microcavity. Our research results can provide a practical sketch to develop both high-efficiency and directional nonlinear optical devices for silicon-based on-chip integration optics.
二维过渡金属二硫属化物(TMDs)具有较大的二阶光学非线性,使其成为片上频率转换器件、全光互连和光电集成组件小型化的理想候选材料。然而,受限于亚纳米级的厚度,单层TMD表现出较低的二次谐波产生(SHG)转换效率(<0.1%)和较差的方向性,这阻碍了它们的实际应用。在此,我们提出了一种法布里-珀罗(F-P)腔,通过将原子级薄的WS薄膜与硅孔矩阵耦合来增强SH发射。通过将激发波长调谐至与微腔模式共振,实现了最大增强(约1580倍)。这种巨大的增强归因于F-P腔中的强电场增强以及悬浮WS中激子的振子强度增强。此外,得益于F-P微腔的共振,获得了定向SH发射(发散角约5°)。我们的研究结果可为开发用于硅基片上集成光学的高效和定向非线性光学器件提供一个实用的方案。