Vu Dung Thi, Matthaiakakis Nikolaos, Saito Hikaru, Sannomiya Takumi
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta Midoriku, Yokohama 226-8503, Japan.
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, NHRF, 48 Vassileos Constantinou Ave., 11635 Athens, Greece.
Nanophotonics. 2022 Jan 12;11(9):2129-2137. doi: 10.1515/nanoph-2021-0643. eCollection 2022 Apr.
Two-dimensional (2D) transition metal dichalcogenides (TMDCs), possessing unique exciton luminescence properties, have attracted significant attention for use in optical and electrical devices. TMDCs are also high refractive index materials that can strongly confine the electromagnetic field in nanoscale dimensions when patterned into nanostructures, thus resulting in complex light emission that includes exciton and dielectric resonances. Here, we use cathodoluminescence (CL) to experimentally visualize the emission modes of single molybdenum disulfide (MoS) nanoflakes and to investigate luminescence enhancement due to dielectric resonances in nanoscale dimensions, by using a scanning transmission electron microscope. Specifically, we identify dielectric modes whose resonant wavelength is sensitive to the shape and size of the nanoflake, and exciton emission peaks whose energies are insensitive to the geometry of the flakes. Using a four-dimensional CL method and boundary element method simulations, we further theoretically and experimentally visualize the emission polarization and angular emission patterns, revealing the coupling of the exciton and dielectric resonant modes. Such nanoscopic observation provides a detailed understanding of the optical responses of MoS including modal couplings of excitons and dielectric resonances which play a crucial role in the development of energy conversion devices, single-photon emitters, and nanophotonic circuits with enhanced light-matter interactions.
二维(2D)过渡金属二硫属化物(TMDCs)具有独特的激子发光特性,在光学和电气设备中的应用引起了广泛关注。TMDCs也是高折射率材料,当被图案化为纳米结构时,能够在纳米尺度上强烈限制电磁场,从而产生包括激子和介电共振在内的复杂发光。在此,我们利用扫描透射电子显微镜,通过阴极发光(CL)实验可视化单个二硫化钼(MoS)纳米薄片的发射模式,并研究纳米尺度下介电共振导致的发光增强。具体而言,我们识别出共振波长对纳米薄片的形状和尺寸敏感的介电模式,以及能量对薄片几何形状不敏感的激子发射峰。使用四维CL方法和边界元方法模拟,我们进一步从理论和实验上可视化发射偏振和角发射模式,揭示激子和介电共振模式的耦合。这种纳米级观察提供了对MoS光学响应的详细理解,包括激子和介电共振的模式耦合,这在能量转换设备、单光子发射器以及具有增强光与物质相互作用的纳米光子电路的发展中起着至关重要的作用。