Suppr超能文献

通过预冻干燥,可见-近红外光谱法预测牛肉脂肪酸组成的效果得到了改善。

Prediction of beef meat fatty acid composition by visible-near-infrared spectroscopy was improved by preliminary freeze-drying.

机构信息

Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.

Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.

出版信息

Meat Sci. 2019 Dec;158:107910. doi: 10.1016/j.meatsci.2019.107910. Epub 2019 Aug 8.

Abstract

The aim of this study was to compare visible-near-infrared spectroscopy (VIS/NIRS) models developed from fresh or freeze-dried samples for predicting the fatty acid (FA) composition of beef samples. The hypothesis tested is that the removal of water from samples could improve the VIS/NIRS model performance. A total of 454 beef samples obtained from different bovine muscles were used. No significant differences were found in the performance of VIS/NIRS models developed from fresh or freeze-dried samples for predicting both major individual FAs and families of FAs and for some FAs (16:0, 18:0, 18:1 n-9, 18:2 n-6, 20:4 n-6, 22:5 n-3, 22:6 n-3, saturated, mono-unsaturated FA, and total n-3 long chain poly-unsaturated FAs (PUFA)). In contrast, the standard error of predictions for total PUFAs, total n-3 PUFAs, total conjugated linoleic acid, 20:5 n-3, and 18:3 n-3 were improved (by 21% on average; P < .05) in freeze-dried samples compared with fresh samples.

摘要

本研究旨在比较从新鲜或冻干样本中开发的可见-近红外光谱(VIS/NIRS)模型,以预测牛肉样本的脂肪酸(FA)组成。测试的假设是,从样本中去除水分可以提高 VIS/NIRS 模型的性能。总共使用了 454 个来自不同牛肌肉的牛肉样本。结果发现,从新鲜或冻干样本中开发的 VIS/NIRS 模型在预测主要个体 FA 和 FA 家族以及某些 FA(16:0、18:0、18:1 n-9、18:2 n-6、20:4 n-6、22:5 n-3、22:6 n-3、饱和、单不饱和 FA 和总 n-3 长链多不饱和 FA(PUFA))方面的性能没有显著差异。相比之下,与新鲜样本相比,冻干样本中总多不饱和脂肪酸(PUFA)、总 n-3 多不饱和脂肪酸、总共轭亚油酸、20:5 n-3 和 18:3 n-3 的预测标准误差提高了(平均提高 21%;P<.05)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验