Institut de Pharmacologie et de Biologie Structurale (IPBS, CNRS UPS), Université de Toulouse, Toulouse, France.
Institut de Pharmacologie et de Biologie Structurale (IPBS, CNRS UPS), Université de Toulouse, Toulouse, France.
Vitam Horm. 2019;111:17-47. doi: 10.1016/bs.vh.2019.05.006. Epub 2019 Jun 29.
Dynorphin is a neuropeptide involved in pain, addiction and mood regulation. It exerts its activity by binding to the kappa opioid receptor (KOP) which belongs to the large family of G protein-coupled receptors. The dynorphin peptide was discovered in 1975, while its receptor was cloned in 1993. This review will describe: (a) the activities and physiological functions of dynorphin and its receptor, (b) early structure-activity relationship studies performed before cloning of the receptor (mostly pharmacological and biophysical studies of peptide analogues), (c) structure-activity relationship studies performed after cloning of the receptor via receptor mutagenesis and the development of recombinant receptor expression systems, (d) structural biology of the opiate receptors culminating in X-ray structures of the four opioid receptors in their inactive state and structures of MOP and KOP receptors in their active state. X-ray and EM structures are combined with NMR data, which gives complementary insight into receptor and peptide dynamics. Molecular modeling greatly benefited from the availability of atomic resolution 3D structures of receptor-ligand complexes and an example of the strategy used to model a dynorphin-KOP receptor complex using NMR data will be described. These achievements have led to a better understanding of the complex dynamics of KOP receptor activation and to the development of new ligands and drugs.
脑啡肽是一种参与疼痛、成瘾和情绪调节的神经肽。它通过与κ阿片受体(KOP)结合发挥作用,KOP 属于 G 蛋白偶联受体大家族。脑啡肽肽于 1975 年被发现,其受体于 1993 年被克隆。本文将描述:(a)脑啡肽及其受体的活性和生理功能,(b)受体克隆前进行的早期结构-活性关系研究(主要是肽类似物的药理学和生物物理学研究),(c)受体克隆后通过受体诱变和重组受体表达系统的发展进行的结构-活性关系研究,(d)阿片受体的结构生物学,最终得到四个阿片受体在非活性状态下的 X 射线结构以及 MOP 和 KOP 受体在活性状态下的结构。X 射线和 EM 结构与 NMR 数据相结合,为受体和肽的动力学提供了互补的见解。分子建模极大地受益于配体复合物的原子分辨率 3D 结构的可用性,并且将描述使用 NMR 数据对脑啡肽-KOP 受体复合物进行建模的策略的示例。这些成就使我们更好地了解 KOP 受体激活的复杂动力学,并开发了新的配体和药物。