MS Center and 3T-MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Napoli, Italy.
Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" - DEI, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
Hum Brain Mapp. 2023 Jan;44(1):186-202. doi: 10.1002/hbm.26106. Epub 2022 Oct 18.
Many patients with multiple sclerosis (MS) experience information processing speed (IPS) deficits, and the Symbol Digit Modalities Test (SDMT) has been recommended as a valid screening test. Magnetic resonance imaging (MRI) has markedly improved the understanding of the mechanisms associated with cognitive deficits in MS. However, which structural MRI markers are the most closely related to cognitive performance is still unclear. We used the multicenter 3T-MRI data set of the Italian Neuroimaging Network Initiative to extract multimodal data (i.e., demographic, clinical, neuropsychological, and structural MRIs) of 540 MS patients. We aimed to assess, through machine learning techniques, the contribution of brain MRI structural volumes in the prediction of IPS deficits when combined with demographic and clinical features. We trained and tested the eXtreme Gradient Boosting (XGBoost) model following a rigorous validation scheme to obtain reliable generalization performance. We carried out a classification and a regression task based on SDMT scores feeding each model with different combinations of features. For the classification task, the model trained with thalamus, cortical gray matter, hippocampus, and lesions volumes achieved an area under the receiver operating characteristic curve of 0.74. For the regression task, the model trained with cortical gray matter and thalamus volumes, EDSS, nucleus accumbens, lesions, and putamen volumes, and age reached a mean absolute error of 0.95. In conclusion, our results confirmed that damage to cortical gray matter and relevant deep and archaic gray matter structures, such as the thalamus and hippocampus, is among the most relevant predictors of cognitive performance in MS.
许多多发性硬化症(MS)患者存在信息处理速度(IPS)缺陷,符号数字模态测试(SDMT)已被推荐作为有效的筛选测试。磁共振成像(MRI)显著提高了对与 MS 认知缺陷相关的机制的理解。然而,哪些结构 MRI 标志物与认知表现最密切相关仍不清楚。我们使用意大利神经影像学网络倡议的多中心 3T-MRI 数据集,提取了 540 名 MS 患者的多模态数据(即人口统计学、临床、神经心理学和结构 MRI)。我们旨在通过机器学习技术评估大脑 MRI 结构体积在结合人口统计学和临床特征预测 IPS 缺陷方面的贡献。我们遵循严格的验证方案,使用极端梯度提升(XGBoost)模型进行训练和测试,以获得可靠的泛化性能。我们根据 SDMT 分数执行了分类和回归任务,为每个模型提供不同特征组合的输入。对于分类任务,使用丘脑、皮质灰质、海马和病灶体积训练的模型,其接收者操作特征曲线下的面积为 0.74。对于回归任务,使用皮质灰质和丘脑体积、EDSS、伏隔核、病灶和壳核体积以及年龄训练的模型达到了 0.95 的平均绝对误差。总之,我们的结果证实,皮质灰质以及相关的深层和古老灰质结构(如丘脑和海马)的损伤是 MS 认知表现的最相关预测因子之一。