Meng Xiaoyi, Han Junxing, Lu Liang, Qiu Genrui, Wang Zhong Lin, Sun Chunwen
CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Small. 2019 Oct;15(41):e1902551. doi: 10.1002/smll.201902551. Epub 2019 Aug 18.
Developing nonprecious electrocatalysts with superior activity and durability for electrochemical water splitting is of great interest but challenging due to the large overpotential required above the thermodynamic standard potential of water splitting (1.23 V). Here, in situ growth of Fe -doped layered double (Ni, Fe) hydroxide (NiFe(II,III)-LDH) on nickel foam with well-defined hexagonal morphology and high crystallinity by a redox reaction between Fe and nickel foam under hydrothermal conditions is reported. Benefiting from tuning the local atomic structure by self-doping Fe , the NiFe(II,III)-LDH catalyst with higher amounts of Fe exhibits high activity toward oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER) activity. Moreover, the optimized NiFe(II,III)-LDH catalyst for OER (O-NiFe(II,III)-LDH) and catalyst for HER (H-NiFe(II,III)-LDH) show overpotentials of 140 and 113 mV, respectively, at a current density of 10 mA cm in 1 m KOH aqueous electrolyte. Using the catalysts for overall water splitting in two-electrode configuration, a low overpotential of just 1.54 V is required at a benchmark current density of 10 mA cm . Furthermore, it is demonstrated that electrolysis of the water device can be drived by a self-powered system through integrating a triboelectric nanogenerator and battery, showing a promising way to realize self-powered electrochemical systems.
开发具有优异活性和耐久性的非贵金属电催化剂用于电化学水分解备受关注,但由于水分解的热力学标准电位(1.23 V)以上需要较大的过电位,这具有挑战性。在此,报道了在水热条件下通过铁与泡沫镍之间的氧化还原反应,原位生长具有明确六边形形态和高结晶度的铁掺杂层状双(镍,铁)氢氧化物(NiFe(II,III)-LDH)泡沫镍。受益于通过自掺杂铁调节局部原子结构,具有较高铁含量的NiFe(II,III)-LDH催化剂对析氧反应(OER)以及析氢反应(HER)均表现出高活性。此外,优化后的用于OER的NiFe(II,III)-LDH催化剂(O-NiFe(II,III)-LDH)和用于HER的催化剂(H-NiFe(II,III)-LDH)在1 m KOH水溶液电解质中,电流密度为10 mA cm时,过电位分别为140和113 mV。在两电极配置中使用这些催化剂进行全水分解,在基准电流密度10 mA cm下仅需1.54 V的低过电位。此外,通过集成摩擦纳米发电机和电池,证明了水分解装置可由自供电系统驱动,这为实现自供电电化学系统提供了一条有前景的途径。