Institute for Medical Physics and Biophysics, Medical Department , Leipzig University , Leipzig , Germany.
Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Turku , Finland.
Langmuir. 2019 Sep 10;35(36):11902-11911. doi: 10.1021/acs.langmuir.9b01202. Epub 2019 Aug 29.
Lateral segregation of lipids in model and biological membranes has been studied intensively in the last decades using a comprehensive set of experimental techniques. Most methods require a probe to report on the biophysical properties of a specific molecule in the lipid bilayer. Because such probes can adversely affect the results of the measurement and perturb the local membrane structure and dynamics, a detailed understanding of probe behavior and its influence on the properties of its direct environment is important. Membrane phase-selective and lipid-mimicking molecules represent common types of probes. Here, we have studied how the fluorescent probes -parinaric acid (tPA), diphenylhexatriene (DPH), and 1-oleoyl-2-propionyl[DPH]--glycero-3-phosphocholine (O-DPH-PC) affect the membrane properties of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers using H and P NMR spectroscopy in the solid state. In addition, using 2D H magic-angle spinning (MAS) nuclear Overhauser enhancement spectroscopy (NOESY) NMR, we have determined the distribution of the probe moieties in the POPC membrane parallel to the membrane normal. We found that the different probes exhibit distinct membrane localizations and distributions, . tPA is located parallel to the membrane normal while DPH predominantly exist in two orientations. Further, tPA was conjugated to sphingomyelin (tPA-SM) as a substitute for the acyl chain in the SM. H NOESY NMR was used to probe the interaction of the tPA-SM with cholesterol as dominant in liquid ordered membrane domains in comparison to POPC-cholesterol interaction in membranes composed of ternary lipid mixtures. We could show that tPA-SM exhibited a strong favorable and very temperature-dependent interaction with cholesterol in comparison to POPC. In conclusion, the NMR techniques can explain probe behavior but also be used to measure lipid-specific affinities between different lipid segments and individual molecules in complex bilayers, relevant to understanding nanodomain formation in biological membranes.
过去几十年来,人们使用一系列全面的实验技术,对模型和生物膜中的脂质侧向分离进行了深入研究。大多数方法都需要探针来报告脂质双层中特定分子的生物物理特性。由于这种探针可能会对测量结果产生不利影响,并干扰局部膜结构和动力学,因此深入了解探针的行为及其对直接环境特性的影响非常重要。膜相选择性和脂质模拟分子是常见的探针类型。在这里,我们使用固态 H 和 P NMR 光谱研究了荧光探针 -parinaric acid (tPA)、diphenylhexatriene (DPH) 和 1-oleoyl-2-propionyl[DPH]--glycero-3-phosphocholine (O-DPH-PC) 如何影响 1-棕榈酰基-2-油酰基-甘油-3-磷酸胆碱 (POPC) 双层膜的性质。此外,我们还使用二维 H 魔角旋转 (MAS) 核奥弗豪瑟增强光谱 (NOESY) NMR,确定了探针部分在平行于膜法线的 POPC 膜中的分布。我们发现不同的探针表现出不同的膜定位和分布。tPA 平行于膜法线,而 DPH 主要存在两种取向。此外,tPA 与神经鞘磷脂 (tPA-SM) 缀合作为 SM 酰链的替代品。H NMR NOESY 用于探测 tPA-SM 与胆固醇的相互作用,与由三元脂质混合物组成的膜中 POPC-胆固醇相互作用相比,tPA-SM 与胆固醇的相互作用在液体有序膜域中占主导地位。我们可以证明,与 POPC 相比,tPA-SM 与胆固醇表现出强烈的有利且非常依赖温度的相互作用。总之,NMR 技术不仅可以解释探针行为,还可以用于测量不同脂质片段和复杂双层中单个分子之间的脂质特异性亲和力,这对于理解生物膜中纳米域的形成很重要。