Fritsch-Decker Susanne, An Zhen, Yan Jin, Hansjosten Iris, Al-Rawi Marco, Peravali Ravindra, Diabaté Silvia, Weiss Carsten
Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Nanomaterials (Basel). 2019 Aug 16;9(8):1172. doi: 10.3390/nano9081172.
Several in vitro studies have suggested that silica nanoparticles (NPs) might induce adverse effects in gut cells. Here, we used the human colon cancer epithelial cell line HCT116 to study the potential cytotoxic effects of ingested silica NPs in the presence or absence of serum. Furthermore, we evaluated different physico-chemical parameters important for the assessment of nanoparticle safety, including primary particle size (12, 70, 200, and 500 nm) and surface modification (-NH and -COOH). Silica NPs triggered cytotoxicity, as evidenced by reduced metabolism and enhanced membrane leakage. Automated microscopy revealed that the silica NPs promoted apoptosis and necrosis proportional to the administered specific surface area dose. Cytotoxicity of silica NPs was suppressed by increasing amount of serum and surface modification. Furthermore, inhibition of caspases partially prevented silica NP-induced cytotoxicity. In order to investigate the role of specific cell death pathways in more detail, we used isogenic derivatives of HCT116 cells which lack the pro-apoptotic proteins p53 or BAX. In contrast to the anticancer drug cisplatin, silica NPs induced cell death independent of the p53-BAX axis. In conclusion, silica NPs initiated cell death in colon cancer cells dependent on the specific surface area and presence of serum. Further studies in vivo are warranted to address potential cytotoxic actions in the gut epithelium. The unintended toxicity of silica NPs as observed here could also be beneficial. As loss of p53 in colon cancer cells contributes to resistance against anticancer drugs, and thus to reoccurrence of colon cancer, targeted delivery of silica NPs could be envisioned to also deplete p53 deficient tumor cells.
多项体外研究表明,二氧化硅纳米颗粒(NPs)可能会对肠道细胞产生不良影响。在此,我们使用人结肠癌细胞系HCT116来研究摄入的二氧化硅纳米颗粒在有血清或无血清情况下的潜在细胞毒性作用。此外,我们评估了对纳米颗粒安全性评估很重要的不同物理化学参数,包括初级粒径(12、70、200和500纳米)和表面修饰(-NH和-COOH)。二氧化硅纳米颗粒引发了细胞毒性,代谢降低和膜通透性增强证明了这一点。自动显微镜检查显示,二氧化硅纳米颗粒促进了凋亡和坏死,且与所给予的比表面积剂量成正比。血清量增加和表面修饰可抑制二氧化硅纳米颗粒的细胞毒性。此外,半胱天冬酶的抑制部分阻止了二氧化硅纳米颗粒诱导的细胞毒性。为了更详细地研究特定细胞死亡途径的作用,我们使用了缺乏促凋亡蛋白p53或BAX的HCT116细胞的同基因衍生物。与抗癌药物顺铂不同,二氧化硅纳米颗粒诱导的细胞死亡不依赖于p53-BAX轴。总之,二氧化硅纳米颗粒在结肠癌细胞中引发细胞死亡,这取决于比表面积和血清的存在。有必要进行进一步的体内研究,以探讨在肠道上皮中的潜在细胞毒性作用。此处观察到的二氧化硅纳米颗粒的意外毒性也可能是有益的。由于结肠癌细胞中p53的缺失会导致对抗癌药物的耐药性,从而导致结肠癌的复发,因此可以设想靶向递送二氧化硅纳米颗粒也可以清除p53缺陷的肿瘤细胞。