Suppr超能文献

酰基甘油磷酸酰基转移酶4/溶血磷脂酸酰基转移酶δ(AGPAT4/LPAATδ)的结构与功能

The Structure and Function of Acylglycerophosphate Acyltransferase 4/ Lysophosphatidic Acid Acyltransferase Delta (AGPAT4/LPAATδ).

作者信息

Zhukovsky Mikhail A, Filograna Angela, Luini Alberto, Corda Daniela, Valente Carmen

机构信息

Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy.

出版信息

Front Cell Dev Biol. 2019 Aug 2;7:147. doi: 10.3389/fcell.2019.00147. eCollection 2019.

Abstract

Lipid-modifying enzymes serve crucial roles in cellular processes such as signal transduction (producing lipid-derived second messengers), intracellular membrane transport (facilitating membrane remodeling needed for membrane fusion/fission), and protein clustering (organizing lipid domains as anchoring platforms). The lipid products crucial in these processes can derive from different metabolic pathways, thus it is essential to know the localization, substrate specificity, deriving products (and their function) of all lipid-modifying enzymes. Here we discuss an emerging family of these enzymes, the lysophosphatidic acid acyltransferases (LPAATs), also known as acylglycerophosphate acyltransferases (AGPATs), that produce phosphatidic acid (PA) having as substrates lysophosphatidic acid (LPA) and acyl-CoA. Eleven LPAAT/AGPAT enzymes have been identified in mice and humans based on sequence homologies, and their localization, specific substrates and functions explored. We focus on one member of the family, LPAATδ, a protein expressed mainly in brain and in muscle (though to a lesser extent in other tissues); while at the cellular level it is localized at the Golgi network membranes and at the mitochondrial outer membranes. LPAATδ is a physiologically essential enzyme since mice knocked-out for show severe dysfunctions including cognitive impairment, impaired force contractility and altered white adipose tissue. The LPAATδ physiological roles are related to the formation of its product PA. PA is a multifunctional lipid involved in cell signaling as well as in membrane remodeling. In particular, the LPAATδ-catalyzed conversion of LPA (inverted-cone-shaped lipid) to PA (cone-shaped lipid) is considered a mechanism of deformation of the bilayer that favors membrane fission. Indeed, LPAATδ is an essential component of the fission-inducing machinery driven by the protein BARS. In this process, a protein-tripartite complex (BARS/14-3-3γ/phosphoinositide kinase PI4KIIIβ) is recruited at the -Golgi network, at the sites where membrane fission is to occur; there, LPAATδ directly interacts with BARS and is activated by BARS. The resulting formation of PA is essential for membrane fission occurring at those spots. Also in mitochondria PA formation has been related to fusion/fission events. Since PA is formed by various enzymatic pathways in different cell compartments, the BARS-LPAATδ interaction indicates the relevance of lipid-modifying enzymes acting exactly where their products are needed (i.e., PA at the Golgi membranes).

摘要

脂质修饰酶在细胞过程中发挥着关键作用,如信号转导(产生脂质衍生的第二信使)、细胞内膜运输(促进膜融合/裂变所需的膜重塑)和蛋白质聚集(将脂质结构域组织为锚定平台)。这些过程中至关重要的脂质产物可源自不同的代谢途径,因此了解所有脂质修饰酶的定位、底物特异性、衍生产物(及其功能)至关重要。在这里,我们讨论这类酶中一个新兴的家族,溶血磷脂酸酰基转移酶(LPAATs),也称为酰基甘油磷酸酰基转移酶(AGPATs),它们以溶血磷脂酸(LPA)和酰基辅酶A为底物产生磷脂酸(PA)。基于序列同源性,在小鼠和人类中已鉴定出11种LPAAT/AGPAT酶,并对它们的定位、特定底物和功能进行了探索。我们关注该家族的一个成员,LPAATδ,一种主要在脑和肌肉中表达的蛋白质(尽管在其他组织中表达程度较低);在细胞水平上,它定位于高尔基体网络膜和线粒体外膜。LPAATδ是一种生理必需酶,因为敲除该基因的小鼠表现出严重功能障碍,包括认知障碍、力收缩受损和白色脂肪组织改变。LPAATδ的生理作用与其产物PA的形成有关。PA是一种多功能脂质,参与细胞信号传导以及膜重塑。特别是,LPAATδ催化的LPA(倒锥形脂质)向PA(锥形脂质)的转化被认为是有利于膜裂变的双层变形机制。事实上,LPAATδ是由蛋白质BARS驱动的裂变诱导机制的重要组成部分。在这个过程中,一个蛋白质三方复合物(BARS/14-3-3γ/磷酸肌醇激酶PI4KIIIβ)在高尔基体网络中膜裂变发生的位点被招募;在那里,LPAATδ直接与BARS相互作用并被BARS激活。由此产生的PA形成对于那些位点发生的膜裂变至关重要。在线粒体中,PA的形成也与融合/裂变事件有关。由于PA在不同细胞区室中由各种酶促途径形成,BARS-LPAATδ相互作用表明脂质修饰酶在其产物所需的精确位置(即高尔基体膜上的PA)发挥作用的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e2/6688108/68b26abdba0e/fcell-07-00147-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验