Suppr超能文献

一种可调谐微流控装置可实现由包含不对称脂质双层的细胞或细胞器大小的脂质囊泡进行货物封装。

A Tunable Microfluidic Device Enables Cargo Encapsulation by Cell- or Organelle-Sized Lipid Vesicles Comprising Asymmetric Lipid Bilayers.

作者信息

Romanov Valentin, McCullough John, Gale Bruce K, Frost Adam

机构信息

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.

Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

Adv Biosyst. 2019 Jul;3(7). doi: 10.1002/adbi.201900010. Epub 2019 May 27.

Abstract

Cellular membranes play host to a wide variety of morphologically and chemically complex processes. Although model membranes, like liposomes, are already widely used to reconstitute and study these processes, better tools are needed for making model bilayers that faithfully mimic cellular membranes. Existing methods for fabricating cell-sized (μm) or organelle-sized (tens to hundreds of nanometers) lipid vesicles have distinctly different requirements. Of particular note for biology, it remains challenging for any technique to efficiently encapsulate fragile cargo molecules or to generate liposomes with stable, asymmetric lipid leaflets within the bilayer. Here a tunable microfluidic device and protocol for fabricating liposomes with desired diameters ranging from ≈10 μm to ≈100 nm are described. Lipid vesicle size is templated by the simple inclusion of a polycarbonate filter within the microfluidic system and tuned with flow rate. It is shown that the vesicles made with this device are stable, unilamellar, lipid asymmetric, and capable of supporting transmembrane protein assembly, peripheral membrane protein binding, as well as soluble cargo encapsulation (including designer nanocages for biotechnology applications). These fabricated vesicles provide a new platform for studying the biophysically rich processes found within lipid-lipid and lipid-protein systems typically associated with cellular membranes.

摘要

细胞膜承载着各种各样形态和化学性质复杂的过程。尽管诸如脂质体之类的模型膜已被广泛用于重构和研究这些过程,但仍需要更好的工具来制备能忠实地模拟细胞膜的模型双层膜。现有的制造细胞大小(微米)或细胞器大小(数十到数百纳米)脂质囊泡的方法有明显不同的要求。对生物学而言特别值得注意的是,对于任何技术来说,有效封装脆弱的货物分子或生成双层膜内具有稳定、不对称脂质单分子层的脂质体仍然具有挑战性。本文描述了一种可调谐的微流控装置和方案,用于制造直径范围从约10微米到约100纳米的具有所需直径的脂质体。脂质囊泡的大小通过在微流控系统中简单地加入聚碳酸酯过滤器来确定,并通过流速进行调节。结果表明,用该装置制造的囊泡是稳定的、单层的、脂质不对称的,并且能够支持跨膜蛋白组装、外周膜蛋白结合以及可溶性货物封装(包括用于生物技术应用的定制纳米笼)。这些制造的囊泡为研究脂质 - 脂质和脂质 - 蛋白质系统中通常与细胞膜相关的丰富生物物理过程提供了一个新平台。

相似文献

4
Mixing solutions in inkjet formed vesicles.在喷墨形成的囊泡中混合溶液。
Methods Enzymol. 2009;465:75-94. doi: 10.1016/S0076-6879(09)65004-7.
7
On-chip microfluidic production of cell-sized liposomes.片上微流控技术生产细胞大小的脂质体。
Nat Protoc. 2018 May;13(5):856-874. doi: 10.1038/nprot.2017.160. Epub 2018 Mar 29.
8
Asymmetric giant lipid vesicle fabrication.不对称巨型脂质囊泡制备
Methods Mol Biol. 2015;1232:79-90. doi: 10.1007/978-1-4939-1752-5_7.
9
Microfluidic directed formation of liposomes of controlled size.微流控法可控尺寸脂质体的定向形成
Langmuir. 2007 May 22;23(11):6289-93. doi: 10.1021/la070051a. Epub 2007 Apr 24.

本文引用的文献

7
Octanol-assisted liposome assembly on chip.芯片上的辛醇辅助脂质体组装。
Nat Commun. 2016 Jan 22;7:10447. doi: 10.1038/ncomms10447.
9
Continuous microfluidic fabrication of synthetic asymmetric vesicles.连续微流控制备合成不对称囊泡。
Lab Chip. 2015 Sep 7;15(17):3591-9. doi: 10.1039/c5lc00520e. Epub 2015 Jul 29.
10
Ferritin family proteins and their use in bionanotechnology.铁蛋白家族蛋白及其在生物纳米技术中的应用。
N Biotechnol. 2015 Dec 25;32(6):651-7. doi: 10.1016/j.nbt.2014.12.006. Epub 2015 Jan 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验