Suppr超能文献

片上微流控技术生产细胞大小的脂质体。

On-chip microfluidic production of cell-sized liposomes.

机构信息

Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.

出版信息

Nat Protoc. 2018 May;13(5):856-874. doi: 10.1038/nprot.2017.160. Epub 2018 Mar 29.

Abstract

In this protocol, we describe a recently developed on-chip microfluidic method to form monodisperse, cell-sized, unilamellar, and biocompatible liposomes with excellent encapsulation efficiency. Termed octanol-assisted liposome assembly (OLA), it resembles bubble-blowing on a microscopic scale. Hydrodynamic flow focusing of two immiscible fluid streams (an aqueous phase and a lipid-containing 1-octanol phase) by orthogonal outer aqueous streams gives rise to double-emulsion droplets. As the lipid bilayer assembles along the interface, each emulsion droplet quickly evolves into a liposome and a 1-octanol droplet. OLA has several advantages as compared with other on-chip techniques, such as a very fast liposome maturation time (a few minutes), a relatively straightforward and completely on-chip setup, and a biologically relevant liposome size range (5-20 μm). Owing to the entire approach being on-chip, OLA enables high-throughput liposome production (typical rate of tens of Hz) using low sample volumes (∼10 μl). For prolonged on-chip experimentation, liposomes are subsequently purified by removing the 1-octanol droplets. For device fabrication, a reusable silicon template is produced in a clean room facility using electron-beam lithography followed by dry reactive ion etching, which takes ∼3 h. The patterned silicon template is used to prepare polydimethylsiloxane (PDMS)-based microfluidic devices in the wet lab, followed by a crucial surface treatment; the whole process takes ∼2 d. Liposomes can be produced in ∼1 h and further manipulated, depending on the experimental setup. OLA offers an ideal microfluidic platform for diverse bottom-up biotechnology studies by enabling creation of synthetic cells, microreactors and bioactive cargo delivery systems, and also has potential as an analytical tool.

摘要

在本方案中,我们描述了一种最近开发的片上微流控方法,用于形成具有优异包封效率的单分散、细胞大小、单层和生物相容的脂质体。该方法称为辛醇辅助脂质体组装(OLA),它类似于微观尺度上的吹泡泡。两个不混溶的流体流(水相和含有脂质的 1-辛醇相)在外水相的正交流聚焦产生双重乳液液滴。随着脂质双层在界面上组装,每个乳液液滴迅速演变成脂质体和 1-辛醇液滴。与其他片上技术相比,OLA 具有几个优势,例如非常快速的脂质体成熟时间(几分钟)、相对简单且完全在片上的设置以及生物相关的脂质体尺寸范围(5-20 μm)。由于整个方法都在片上,因此 OLA 可以使用低样品量(约 10 μl)实现高通量脂质体生产(典型速率为几十赫兹)。为了进行长时间的片上实验,随后通过去除 1-辛醇液滴来纯化脂质体。对于器件制造,使用电子束光刻 followed by 干反应离子刻蚀在洁净室设施中制作可重复使用的硅模板,这需要大约 3 小时。使用图案化的硅模板在湿实验室中制备基于聚二甲基硅氧烷(PDMS)的微流控器件,随后进行关键的表面处理;整个过程需要大约 2 天。大约 1 小时可以生产出脂质体,并且可以根据实验设置进一步进行操作。OLA 通过能够创建合成细胞、微反应器和生物活性货物输送系统,为各种自下而上的生物技术研究提供了理想的微流控平台,并且作为分析工具也具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验