1Physical Chemistry of Biosystems, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
2Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Philosophenweg 19, Heidelberg University, 69120 Heidelberg, Germany.
Commun Biol. 2019 Aug 13;2:311. doi: 10.1038/s42003-019-0556-6. eCollection 2019.
During intraerythrocytic development, the human malaria parasite alters the mechanical deformability of its host cell. The underpinning biological processes involve gain in parasite mass, changes in the membrane protein compositions, reorganization of the cytoskeletons and its coupling to the plasma membrane, and formation of membrane protrusions, termed knobs. The hemoglobinopathies S and C are known to partially protect carriers from severe malaria, possibly through additional changes in the erythrocyte biomechanics, but a detailed quantification of cell mechanics is still missing. Here, we combined flicker spectroscopy and a mathematical model and demonstrated that knob formation strongly suppresses membrane fluctuations by increasing membrane-cytoskeleton coupling. We found that the confinement increased with hemoglobin S but decreases with hemoglobin C in spite of comparable knob densities and diameters. We further found that the membrane bending modulus strongly depends on the hemoglobinopathetic variant, suggesting increased amounts of irreversibly oxidized hemichromes bound to membranes.
在红细胞内发育过程中,人类疟原虫改变了宿主细胞的机械变形能力。潜在的生物学过程涉及寄生虫质量的增加、膜蛋白组成的变化、细胞骨架的重组及其与质膜的偶联,以及膜突起的形成,称为 knob。已知血红蛋白病 S 和 C 部分保护携带者免受严重疟疾的侵害,可能是通过红细胞生物力学的额外变化,但细胞力学的详细定量仍然缺失。在这里,我们结合闪烁光谱和数学模型,证明了 knob 的形成通过增加膜-细胞骨架的偶联强烈抑制了膜波动。我们发现,尽管 knob 的密度和直径相当,但血红蛋白 S 增加了膜的限制,而血红蛋白 C 则降低了膜的限制。我们进一步发现,膜弯曲模量强烈依赖于血红蛋白病变体,表明与膜结合的不可逆氧化的血影蛋白量增加。