School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, Queensland 4102, Australia.
J R Soc Interface. 2019 Aug 30;16(157):20190382. doi: 10.1098/rsif.2019.0382. Epub 2019 Aug 21.
We present a suite of experimental data showing that cell proliferation assays, prepared using standard methods thought to produce asynchronous cell populations, persistently exhibit inherent synchronization. Our experiments use fluorescent cell cycle indicators to reveal the normally hidden cell synchronization, by highlighting oscillatory subpopulations within the total cell population. These oscillatory subpopulations would never be observed without these cell cycle indicators. On the other hand, our experimental data show that the total cell population appears to grow exponentially, as in an asynchronous population. We reconcile these seemingly inconsistent observations by employing a multi-stage mathematical model of cell proliferation that can replicate the oscillatory subpopulations. Our study has important implications for understanding and improving experimental reproducibility. In particular, inherent synchronization may affect the experimental reproducibility of studies aiming to investigate cell cycle-dependent mechanisms, including changes in migration and drug response.
我们呈现了一系列实验数据,表明使用被认为能产生非同步细胞群体的标准方法制备的细胞增殖检测,持续表现出固有同步性。我们的实验使用荧光细胞周期指示剂来揭示通常隐藏的细胞同步性,突出总细胞群体中的振荡亚群。如果没有这些细胞周期指示剂,这些振荡亚群将永远无法被观察到。另一方面,我们的实验数据表明,总细胞群体似乎呈指数增长,就像在非同步群体中一样。我们通过采用能够复制振荡亚群的多阶段细胞增殖数学模型来调和这些看似不一致的观察结果。我们的研究对于理解和提高实验可重复性具有重要意义。特别是固有同步性可能会影响旨在研究细胞周期依赖性机制的研究的实验可重复性,包括迁移和药物反应的变化。