Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia.
Phys Chem Chem Phys. 2019 Sep 21;21(35):18850-18865. doi: 10.1039/c9cp03414e. Epub 2019 Aug 21.
Proton detected solid-state NMR under fast magic-angle-spinning (MAS) conditions is currently redefining the applications of solid-state NMR, in particular in structural biology. Understanding the contributions to the spectral linewidth is thereby of paramount importance. When disregarding the sample-dependent inhomogeneous contributions, the NMR proton linewidth is defined by homogeneous broadening, which has incoherent and coherent contributions. Understanding and disentangling these different contributions in multi-spin systems like proteins is still an open issue. The coherent contribution is mainly caused by the dipolar interaction under MAS and is determined by the molecular structure and the proton chemical shifts. Numerical simulation approaches based on numerically exact direct integration of the Liouville-von Neumann equation can give valuable information about the lineshape, but are limited to small spin systems (<12 spins). We present an alternative simulation method for the coherent contributions based on the rapid and partially analytic calculation of the second moments of large spin systems. We first validate the method on a simple system by predicting the F linewidth in CaF under MAS. We compare simulation results to experimental data for microcrystalline ubiquitin (deuterated 100% back-exchanged at 110 kHz and fully-protonated at 125 kHz). Our results quantitatively explain the observed linewidth per-residue basis for the vast majority of residues.
在快速魔角旋转(MAS)条件下检测到的质子固态 NMR 目前正在重新定义固态 NMR 的应用,特别是在结构生物学中。因此,理解谱线宽度的贡献至关重要。当忽略与样品相关的不均匀贡献时,NMR 质子线宽由均匀展宽定义,均匀展宽具有非相干和相干贡献。在蛋白质等多自旋系统中理解和分辨这些不同的贡献仍然是一个悬而未决的问题。相干贡献主要是由 MAS 下的偶极相互作用引起的,并由分子结构和质子化学位移决定。基于对刘维尔-冯诺依曼方程的数值精确直接积分的数值模拟方法可以提供有关谱线形状的有价值信息,但仅限于小自旋系统(<12 个自旋)。我们提出了一种基于大自旋系统的第二矩快速和部分解析计算的相干贡献的替代模拟方法。我们首先通过预测 MAS 下 CaF 中的 F 线宽来验证该方法在简单系统上的有效性。我们将模拟结果与微结晶泛素(110 kHz 时完全回交换氘化 100%,125 kHz 时完全质子化)的实验数据进行比较。我们的结果定量地解释了绝大多数残基的观察到的线宽。