Malär Alexander A, Völker Laura A, Cadalbert Riccardo, Lecoq Lauriane, Ernst Matthias, Böckmann Anja, Meier Beat H, Wiegand Thomas
Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
J Phys Chem B. 2021 Jun 17;125(23):6222-6230. doi: 10.1021/acs.jpcb.1c04061. Epub 2021 Jun 7.
Temperature-dependent NMR experiments are often complicated by rather long magnetic-field equilibration times, for example, occurring upon a change of sample temperature. We demonstrate that the fast temporal stabilization of a magnetic field can be achieved by actively stabilizing the temperature of the magnet bore, which allows quantification of the weak temperature dependence of a proton chemical shift, which can be diagnostic for the presence of hydrogen bonds. Hydrogen bonding plays a central role in molecular recognition events from both fields, chemistry and biology. Their direct detection by standard structure-determination techniques, such as X-ray crystallography or cryo-electron microscopy, remains challenging due to the difficulties of approaching the required resolution, on the order of 1 Å. We, herein, explore a spectroscopic approach using solid-state NMR to identify protons engaged in hydrogen bonds and explore the measurement of proton chemical-shift temperature coefficients. Using the examples of a phosphorylated amino acid and the protein ubiquitin, we show that fast magic-angle spinning (MAS) experiments at 100 kHz yield sufficient resolution in proton-detected spectra to quantify the rather small chemical-shift changes upon temperature variations.
温度依赖的核磁共振实验常常因相当长的磁场平衡时间而变得复杂,例如,在样品温度变化时就会出现这种情况。我们证明,通过主动稳定磁体孔的温度,可以实现磁场的快速时间稳定,这使得能够对质子化学位移微弱的温度依赖性进行量化,而这种依赖性可用于诊断氢键的存在。氢键在化学和生物学这两个领域的分子识别事件中都起着核心作用。由于难以达到所需的约1 Å分辨率,通过标准结构测定技术(如X射线晶体学或冷冻电子显微镜)直接检测氢键仍然具有挑战性。在此,我们探索一种使用固态核磁共振的光谱方法来识别参与氢键的质子,并探索质子化学位移温度系数的测量。以磷酸化氨基酸和蛋白质泛素为例,我们表明在100 kHz下进行的快速魔角旋转(MAS)实验在质子检测光谱中产生了足够的分辨率,以量化温度变化时相当小的化学位移变化。