Suppr超能文献

利用医疗保健系统数据测量跌倒伤害,并评估测量模型的包容性和有效性。

Measurement of Fall Injury With Health Care System Data and Assessment of Inclusiveness and Validity of Measurement Models.

机构信息

Institute for Healthcare Policy and Innovation, Ann Arbor, Michigan.

Geriatric Research Education Clinical Center, Virginia Ann Arbor Healthcare System, Ann Arbor, Michigan.

出版信息

JAMA Netw Open. 2019 Aug 2;2(8):e199679. doi: 10.1001/jamanetworkopen.2019.9679.

Abstract

IMPORTANCE

National injury surveillance systems use administrative data to collect information about severe fall-related trauma and mortality. Measuring milder injuries in ambulatory clinics would improve comprehensive outcomes measurement across the care spectrum.

OBJECTIVES

To assess a flexible set of administrative data-only algorithms for health systems to capture a greater breadth of injuries than traditional fall injury surveillance algorithms and to quantify the algorithm inclusiveness and validity associated with expanding to milder injuries.

DESIGN, SETTING, AND PARTICIPANTS: In this longitudinal diagnostic study of 13 939 older adults (≥65 years) in the nationally representative Health and Retirement Study, a survey was conducted every 2 years and was linked to hospital, emergency department, postacute skilled nursing home, and outpatient Medicare claims (2000-2012). During each 2-year observation period, participants were considered to have sustained a fall-related injury (FRI) based on a composite reference standard of having either an external cause of injury (E-code) or confirmation by the Health and Retirement Study patient interview. A framework involving 3 algorithms with International Classification of Diseases, Ninth Revision codes that extend FRI identification with administrative data beyond the use of fall-related E-codes was developed: an acute care algorithm (head and face or limb, neck, and trunk injury reported at the hospital or emergency department), a balanced algorithm (all acute care algorithm injuries plus severe nonemergency outpatient injuries), and an inclusive algorithm (almost all injuries). Data were collected from January 1, 1998, through December 31, 2012, and statistical analysis was performed from August 1, 2016, to March 1, 2019.

MAIN OUTCOMES AND MEASURES

Validity, measured as the proportion of potential FRI diagnoses confirmed by the reference standard, and inclusiveness, measured as the proportion of reference-standard FRIs captured by the potential FRI diagnoses.

RESULTS

Of 13 939 participants, 1672 (42.4%) were male, with a mean (SD) age of 77.56 (7.63) years. Among 50 310 observation periods, 9270 potential FRI diagnoses (18.4%) were identified; these were tested against 8621 reference-standard FRIs (17.1%). Compared with the commonly used method of E-coded-only FRIs (2-year incidence, 8.8% [95% CI, 8.6%-9.1%]; inclusion of 51.5% [95% CI, 50.4%-52.5%] of the reference-standard FRIs), FRI inclusion was increased with use of the study framework of algorithms. With the acute care algorithm (2-year incidence, 12.6% [95% CI, 12.4%-12.9%]), validity was prioritized (88.6% [95% CI, 87.4%-89.8%]) over inclusiveness (62.1% [95% CI, 61.1%-63.1%]). The balanced algorithm showed a 2-year incidence of 14.6% (95% CI, 14.3%-14.9%), inclusion of 65.3% (95% CI, 64.3%-66.3%), and validity of 83.2% (95% CI, 81.9%-84.6%). With the inclusive algorithm, the number of potential FRIs increased compared with the E-code-only method (2-year incidence, 17.4% [95% CI, 17.1%-17.8%]; inclusion, 68.4% [95% CI, 67.4%-69.3%]; validity, 75.2% [95% CI, 73.7%-76.6%]).

CONCLUSIONS AND RELEVANCE

The findings suggest that use of algorithms with International Classification of Diseases, Ninth Revision codes may increase inclusion of FRIs by health care systems compared with E-codes and that these algorithms may be used by health systems to evaluate interventions and quality improvement efforts.

摘要

重要性

国家伤害监测系统使用行政数据来收集严重与跌倒相关的创伤和死亡率信息。在门诊诊所测量更轻微的伤害可以改善整个护理范围内的综合结果测量。

目的

评估一套灵活的仅基于行政数据的算法,以便医疗系统能够比传统的跌倒伤害监测算法更广泛地捕捉伤害,并量化与扩展到更轻微伤害相关的算法包容性和有效性。

设计、设置和参与者:在这项针对全国代表性健康与退休研究中 13939 名老年人(≥65 岁)的纵向诊断研究中,每 2 年进行一次调查,并与医院、急诊部、康复护理院和门诊医疗保险索赔(2000-2012 年)相关联。在每 2 年的观察期内,如果参考标准中存在外部伤害原因(E 码)或经健康与退休研究患者访谈确认,参与者被认为发生了与跌倒相关的伤害(FRI)。开发了一个涉及 3 个算法的框架,这些算法使用国际疾病分类,第九版代码,将 FRI 的识别扩展到行政数据之外,使用跌倒相关的 E 码:急性护理算法(在医院或急诊部报告的头部和面部或肢体、颈部和躯干损伤)、平衡算法(所有急性护理算法损伤加上严重非紧急门诊损伤)和包容性算法(几乎所有损伤)。数据收集自 1998 年 1 月 1 日至 2012 年 12 月 31 日,统计分析自 2016 年 8 月 1 日至 2019 年 3 月 1 日进行。

主要结果和措施

有效性,以潜在 FRI 诊断经参考标准确认的比例衡量;包容性,以潜在 FRI 诊断捕获的参考标准 FRIs 的比例衡量。

结果

在 13939 名参与者中,1672 名(42.4%)为男性,平均(SD)年龄为 77.56(7.63)岁。在 50310 个观察期中,确定了 9270 个潜在的 FRI 诊断(18.4%);这些诊断与 8621 个参考标准 FRIs(17.1%)进行了测试。与常用的 E 编码 FRI 方法相比(2 年发生率为 8.8%[95%CI,8.6%-9.1%];纳入参考标准 FRIs 的 51.5%[95%CI,50.4%-52.5%]),使用该研究框架的算法可以增加 FRI 的纳入。使用急性护理算法(2 年发生率为 12.6%[95%CI,12.4%-12.9%]),则更注重有效性(88.6%[95%CI,87.4%-89.8%])而不是包容性(62.1%[95%CI,61.1%-63.1%])。平衡算法的 2 年发生率为 14.6%(95%CI,14.3%-14.9%),纳入率为 65.3%(95%CI,64.3%-66.3%),有效性为 83.2%(95%CI,81.9%-84.6%)。与仅使用 E 码方法相比,包容性算法中潜在 FRIs 的数量增加(2 年发生率为 17.4%[95%CI,17.1%-17.8%];纳入率为 68.4%[95%CI,67.4%-69.3%];有效性为 75.2%[95%CI,73.7%-76.6%])。

结论和相关性

研究结果表明,与 E 码相比,使用包含国际疾病分类,第九版代码的算法可能会增加医疗系统对 FRIs 的纳入,并可能被医疗系统用于评估干预措施和质量改进工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c152/6707014/69e8ef6450c1/jamanetwopen-2-e199679-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验