Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.
Prostate. 2019 Oct;79(14):1705-1714. doi: 10.1002/pros.23895. Epub 2019 Aug 21.
We identify and validate accurate diagnostic biomarkers for prostate cancer through a systematic evaluation of DNA methylation alterations.
We assembled three early prostate cancer cohorts (total patients = 699) from which we collected and processed over 1300 prostatectomy tissue samples for DNA extraction. Using real-time methylation-specific PCR, we measured normalized methylation levels at 15 frequently methylated loci. After partitioning sample sets into independent training and validation cohorts, classifiers were developed using logistic regression, analyzed, and validated.
In the training dataset, DNA methylation levels at 7 of 15 genomic loci (glutathione S-transferase Pi 1 [GSTP1], CCDC181, hyaluronan, and proteoglycan link protein 3 [HAPLN3], GSTM2, growth arrest-specific 6 [GAS6], RASSF1, and APC) showed large differences between cancer and benign samples. The best binary classifier was the GAS6/GSTP1/HAPLN3 logistic regression model, with an area under these curves of 0.97, which showed a sensitivity of 94%, and a specificity of 93% after external validation.
We created and validated a multigene model for the classification of benign and malignant prostate tissue. With false positive and negative rates below 7%, this three-gene biomarker represents a promising basis for more accurate prostate cancer diagnosis.
我们通过系统评估 DNA 甲基化改变来识别和验证前列腺癌的准确诊断生物标志物。
我们组建了三个早期前列腺癌队列(总患者数=699 例),从中收集并处理了超过 1300 例前列腺切除术组织样本进行 DNA 提取。使用实时甲基化特异性 PCR,我们测量了 15 个经常甲基化的基因座的标准化甲基化水平。在将样本集划分为独立的训练和验证队列后,使用逻辑回归开发了分类器,并进行了分析和验证。
在训练数据集,15 个基因组座中的 7 个(谷胱甘肽 S-转移酶 Pi 1 [GSTP1]、CCDC181、透明质酸和蛋白聚糖连接蛋白 3 [HAPLN3]、GSTM2、生长停滞特异性 6 [GAS6]、RASSF1 和 APC)的 DNA 甲基化水平在癌症和良性样本之间存在较大差异。最佳的二进制分类器是 GAS6/GSTP1/HAPLN3 逻辑回归模型,其曲线下面积为 0.97,在外部验证时的敏感性为 94%,特异性为 93%。
我们创建并验证了一个用于良性和恶性前列腺组织分类的多基因模型。该三基因生物标志物的假阳性和假阴性率低于 7%,为更准确的前列腺癌诊断提供了有前途的基础。