Suppr超能文献

基于具有特征核心分布和差异关系的化合物集评估不同的虚拟筛选策略。

Evaluation of different virtual screening strategies on the basis of compound sets with characteristic core distributions and dissimilarity relationships.

机构信息

Data Science Center and Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Endenicher Allee 19c, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany.

出版信息

J Comput Aided Mol Des. 2019 Aug;33(8):729-743. doi: 10.1007/s10822-019-00218-8. Epub 2019 Aug 21.

Abstract

In this work, computational compound screening strategies on the basis of two- and three-dimensional (2D and 3D) molecular representations were investigated including similarity searching and support vector machine (SVM) ranking. Calculations based on topological fingerprints and molecular shape queries and features were compared. A unique aspect of the analysis setting apart from previous comparisons of 2D and 3D virtual screening approaches has been the design of compound reference, training, and test data sets with controlled incremental increases in intra-set structural diversity and different categories of structural relationships between reference/training and test sets. The use of these data sets made it possible to assess the relative performance of 2D and 3D screening strategies under increasingly challenging conditions ultimately leading to the use of training and test sets with essentially unrelated structures. The results showed that 3D similarity searching had little advantage over 2D searching in identifying active compounds with remote structural relationships. However, 3D SVM models trained on the basis of shape features were superior to other approaches (including 2D SVM) when the detection of structure-activity relationships became increasingly challenging. Such 3D SVM methods has thus far only been little investigated in virtual screening, proving a wealth of opportunities for further analyses.

摘要

在这项工作中,研究了基于二维 (2D) 和三维 (3D) 分子表示的计算化合物筛选策略,包括相似性搜索和支持向量机 (SVM) 排序。比较了基于拓扑指纹和分子形状查询以及特征的计算。与之前对 2D 和 3D 虚拟筛选方法的比较相比,分析的一个独特方面是设计化合物参考、训练和测试数据集,以控制数据集内结构多样性和参考/训练和测试集之间结构关系的不同类别逐步增加。使用这些数据集可以评估 2D 和 3D 筛选策略在越来越具有挑战性的条件下的相对性能,最终导致使用本质上不相关结构的训练和测试集。结果表明,在识别具有远程结构关系的活性化合物方面,3D 相似性搜索并没有比 2D 搜索有优势。然而,当检测结构-活性关系变得越来越具有挑战性时,基于形状特征训练的 3D SVM 模型优于其他方法(包括 2D SVM)。因此,到目前为止,3D SVM 方法在虚拟筛选中几乎没有被研究过,为进一步分析提供了丰富的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验