MRL, Merck & Co., Inc., West Point, Pennsylvania, USA.
Ashland Inc., 500 Hercules Road, Bldg. 8162/204, Wilmington, Delaware, 19808, USA.
Pharm Res. 2020 May 13;37(6):94. doi: 10.1007/s11095-020-02813-z.
An investigation of underlying mechanisms of API-polymer interaction patterns has the potential to provide valuable insights for selecting appropriate formulations with superior physical stability and processability.
In this study, copovidone was used as a polymeric carrier for several model compounds including clotrimazole, nifedipine, and posaconazole. The varied chemical structures conferred the ability for the model compounds to form distinct interactions with copovidone. Rheology and nuclear magnetic resonance (NMR) were combined to investigate the molecular pattern and relative strength of active pharmaceutical ingredient (API)-polymer interactions. In addition, the impact of the interactions on formulation processability via hot melt extrusion (HME) and physical stability were evaluated.
The rheological response of an API-polymer system was found to be highly sensitive to API-polymer interaction, depending both on API chemistry and API-polymer miscibility. In the systems studied, dispersed API induced a stronger plasticizer effect on the polymer matrix compared to crystalline/aggregated API. Correspondingly, the processing torque via HME showed a proportional relationship with the maximum complex viscosity of the API-polymer system. In order to quantitatively evaluate the relative strength of the API-polymer interaction, homogeneously dispersed API-polymer amorphous samples were prepared by HME at an elevated temperature. DSC, XRD, and rheology were employed to confirm the amorphous integrity and homogeneity of the resultant extrudates. Subsequently, the homogeneously dispersed API-polymer amorphous dispersions were interrogated by rheology and NMR to provide a qualitative and quantitative assessment of the nature of the API-polymer interaction, both macroscopically and microscopically. Rheological master curves of frequency sweeps of the extrudates exhibited a strong dependence on the API chemistry and revealed a rank ordering of the relative strength of API-copovidone interactions, in the order of posaconazole > nifedipine > clotrimazole. NMR data provided the means to precisely map the API-polymer interaction pattern and identify the specific sites of interaction from a molecular perspective. Finally, the impact of API-polymer interactions on the physical stability of the resultant extrudates was studied.
Qualitative and quantitative evaluation of the relative strength of the API-polymer interaction was successfully accomplished by utilizing combined rheology and NMR. Graphical Abstract.
研究 API-聚合物相互作用模式的潜在机制,有可能为选择具有优异物理稳定性和可加工性的合适配方提供有价值的见解。
在本研究中,共聚维酮被用作几种模型化合物的聚合物载体,包括克霉唑、硝苯地平和泊沙康唑。不同的化学结构使模型化合物能够与共聚维酮形成不同的相互作用。流变学和核磁共振(NMR)相结合,研究了活性药物成分(API)-聚合物相互作用的分子模式和相对强度。此外,还评估了相互作用对热熔挤出(HME)和物理稳定性的制剂加工性能的影响。
发现 API-聚合物系统的流变响应对 API-聚合物相互作用高度敏感,这取决于 API 的化学性质和 API-聚合物的混溶性。在所研究的系统中,与结晶/聚集的 API 相比,分散的 API 对聚合物基质产生了更强的塑化作用。相应地,通过 HME 显示的加工扭矩与 API-聚合物系统的最大复合粘度呈比例关系。为了定量评估 API-聚合物相互作用的相对强度,通过 HME 在高温下制备了均匀分散的 API-聚合物无定形样品。采用差示扫描量热法(DSC)、X 射线衍射(XRD)和流变学对所得挤出物的无定形完整性和均一性进行了确认。随后,通过流变学和 NMR 对均匀分散的 API-聚合物无定形分散体进行了检测,从宏观和微观上对 API-聚合物相互作用的性质进行了定性和定量评估。挤出物的频率扫描流变学主曲线强烈依赖于 API 的化学性质,并揭示了 API-共聚维酮相互作用相对强度的排序,按相对强度顺序为泊沙康唑>硝苯地平>克霉唑。NMR 数据提供了从分子角度精确绘制 API-聚合物相互作用模式并确定相互作用特定部位的方法。最后,研究了 API-聚合物相互作用对所得挤出物物理稳定性的影响。
通过流变学和 NMR 的结合,成功地对 API-聚合物相互作用的相对强度进行了定性和定量评价。