Wang Ethan, Kang Hong, Gong Yang
College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.
School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
Stud Health Technol Inform. 2019 Aug 21;264:883-887. doi: 10.3233/SHTI190350.
Patient safety events (PSEs), or medical errors, are major impediments to healthcare system safety. Health information technology (HIT) is expected to promote quality of care. Nonetheless, HIT also creates unintended consequences that concern patient safety consolidating a high-quality database of HIT events is essential to understanding their nature. Previous studies demonstrated the potential to use FDA Manufacturer and User Facility Device Experience (MAUDE) database to extract HIT events. In this study, we utilized classic and CNN models to extract HIT events from MAUDE. Both individual and combined models were evaluated on the test set, where the best model identified HIT events with ~90% accuracy and achieved a ~.87 f1 score. This model was capable of identifying HIT events in an HIT-exclusive database and serving as a quality and error check tool during event reporting. Moreover, the strategy of HIT event identification may scale in developing other PSE subtype-specific databases.
患者安全事件(PSEs),即医疗差错,是医疗系统安全的主要障碍。健康信息技术(HIT)有望提升医疗质量。尽管如此,HIT也会产生与患者安全相关的意外后果。整合高质量的HIT事件数据库对于了解其本质至关重要。先前的研究表明,利用美国食品药品监督管理局(FDA)的制造商和用户设施设备经验(MAUDE)数据库来提取HIT事件具有潜力。在本研究中,我们使用经典模型和卷积神经网络(CNN)模型从MAUDE中提取HIT事件。在测试集上对单个模型和组合模型进行了评估,其中最佳模型识别HIT事件的准确率约为90%,F1分数约为0.87。该模型能够在一个仅包含HIT的数据库中识别HIT事件,并在事件报告期间作为质量和差错检查工具。此外,HIT事件识别策略可能适用于开发其他特定于PSE亚型的数据库。
Stud Health Technol Inform. 2019-8-21
Stud Health Technol Inform. 2017
Stud Health Technol Inform. 2018
J Biomed Inform. 2020-10
J Am Med Inform Assoc. 2011-9-8
J Am Med Inform Assoc. 2013-5-10
EuroIntervention. 2024-4-1
JMIR Med Inform. 2020-7-24