文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用美国食品药品监督管理局不良事件报告系统(MAUDE)报告生成健康信息技术事件数据库。

Generating a Health Information Technology Event Database from FDA MAUDE Reports.

作者信息

Wang Ethan, Kang Hong, Gong Yang

机构信息

College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

Stud Health Technol Inform. 2019 Aug 21;264:883-887. doi: 10.3233/SHTI190350.


DOI:10.3233/SHTI190350
PMID:31438051
Abstract

Patient safety events (PSEs), or medical errors, are major impediments to healthcare system safety. Health information technology (HIT) is expected to promote quality of care. Nonetheless, HIT also creates unintended consequences that concern patient safety consolidating a high-quality database of HIT events is essential to understanding their nature. Previous studies demonstrated the potential to use FDA Manufacturer and User Facility Device Experience (MAUDE) database to extract HIT events. In this study, we utilized classic and CNN models to extract HIT events from MAUDE. Both individual and combined models were evaluated on the test set, where the best model identified HIT events with ~90% accuracy and achieved a ~.87 f1 score. This model was capable of identifying HIT events in an HIT-exclusive database and serving as a quality and error check tool during event reporting. Moreover, the strategy of HIT event identification may scale in developing other PSE subtype-specific databases.

摘要

患者安全事件(PSEs),即医疗差错,是医疗系统安全的主要障碍。健康信息技术(HIT)有望提升医疗质量。尽管如此,HIT也会产生与患者安全相关的意外后果。整合高质量的HIT事件数据库对于了解其本质至关重要。先前的研究表明,利用美国食品药品监督管理局(FDA)的制造商和用户设施设备经验(MAUDE)数据库来提取HIT事件具有潜力。在本研究中,我们使用经典模型和卷积神经网络(CNN)模型从MAUDE中提取HIT事件。在测试集上对单个模型和组合模型进行了评估,其中最佳模型识别HIT事件的准确率约为90%,F1分数约为0.87。该模型能够在一个仅包含HIT的数据库中识别HIT事件,并在事件报告期间作为质量和差错检查工具。此外,HIT事件识别策略可能适用于开发其他特定于PSE亚型的数据库。

相似文献

[1]
Generating a Health Information Technology Event Database from FDA MAUDE Reports.

Stud Health Technol Inform. 2019-8-21

[2]
Identifying and Synchronizing Health Information Technology (HIT) Events from FDA Medical Device Reports.

Stud Health Technol Inform. 2017

[3]
Exploring Health Information Technology Events from FDA MAUDE Database.

Stud Health Technol Inform. 2018

[4]
Initializing and Growing a Database of Health Information Technology (HIT) Events by Using TF-IDF and Biterm Topic Modeling.

AMIA Annu Symp Proc. 2018-4-16

[5]
Creating a database for health IT events via a hybrid deep learning model.

J Biomed Inform. 2020-10

[6]
Using FDA reports to inform a classification for health information technology safety problems.

J Am Med Inform Assoc. 2011-9-8

[7]
Toward safer health care: a review strategy of FDA medical device adverse event database to identify and categorize health information technology related events.

JAMIA Open. 2018-10-12

[8]
Patient safety problems associated with heathcare information technology: an analysis of adverse events reported to the US Food and Drug Administration.

AMIA Annu Symp Proc. 2011

[9]
Using statistical text classification to identify health information technology incidents.

J Am Med Inform Assoc. 2013-5-10

[10]
Identifying health information technology related safety event reports from patient safety event report databases.

J Biomed Inform. 2018-9-10

引用本文的文献

[1]
A Descriptive Analysis of Capsule Endoscopy Events in the FDA Manufacturer and User Facility Device Experience (MAUDE) Database.

J Dig Endosc. 2021-6

[2]
Percutaneous interventions for pulmonary embolism.

EuroIntervention. 2024-4-1

[3]
Evidence-based clinical engineering: Health information technology adverse events identification and classification with natural language processing.

Heliyon. 2023-10-31

[4]
Toward an Ecologically Valid Conceptual Framework for the Use of Artificial Intelligence in Clinical Settings: Need for Systems Thinking, Accountability, Decision-making, Trust, and Patient Safety Considerations in Safeguarding the Technology and Clinicians.

JMIR Hum Factors. 2022-6-21

[5]
Role of Artificial Intelligence in Patient Safety Outcomes: Systematic Literature Review.

JMIR Med Inform. 2020-7-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索