Suppr超能文献

循证临床工程:利用自然语言处理技术进行健康信息技术不良事件的识别与分类

Evidence-based clinical engineering: Health information technology adverse events identification and classification with natural language processing.

作者信息

Luschi Alessio, Nesi Paolo, Iadanza Ernesto

机构信息

Department of Information Engineering, University of Florence, Via di S. Marta, 3, 50139, Firenze (FI), Italy.

DISIT Lab, University of Florence, Via di S. Marta, 3, 50139, Firenze (FI), Italy.

出版信息

Heliyon. 2023 Oct 31;9(11):e21723. doi: 10.1016/j.heliyon.2023.e21723. eCollection 2023 Nov.

Abstract

The primary goal of this project is to create a framework to extract Real-World Evidence to support Health Technology Assessment, Health Technology Management, Evidence-Based Maintenance, and Post Market Surveillance (as outlined in the EU Medical Device Regulation 2017/745) of medical devices using Natural Language Processing (NLP) and Artificial Intelligence. An initial literature review on Spontaneous Reporting System databases, Health Information Technologies (HIT) fault classification, and Natural Language Processing has been conducted, from which it clearly emerges that adverse events related to HIT are increasing over time. The proposed framework uses NLP techniques and Explainable Artificial Intelligence models to automatically identify HIT-related adverse event reports. The designed model employs a pre-trained version of ClinicalBERT that has been fine-tuned and tested on 3,075 adverse event reports extracted from the FDA MAUDE database and manually labelled by experts.

摘要

该项目的主要目标是创建一个框架,利用自然语言处理(NLP)和人工智能来提取真实世界证据,以支持医疗设备的卫生技术评估、卫生技术管理、循证维护和上市后监测(如欧盟2017/745号医疗器械法规所述)。已对自发报告系统数据库、健康信息技术(HIT)故障分类和自然语言处理进行了初步文献综述,从中可以清楚地看出,与HIT相关的不良事件随着时间的推移而增加。所提出的框架使用NLP技术和可解释人工智能模型来自动识别与HIT相关的不良事件报告。所设计的模型采用了ClinicalBERT的预训练版本,该版本已在从FDA MAUDE数据库中提取并由专家手动标注的3075份不良事件报告上进行了微调与测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bad9/10638042/5ade4f2c5b79/gr001.jpg

相似文献

4
A systematic review of natural language processing for classification tasks in the field of incident reporting and adverse event analysis.
Int J Med Inform. 2019 Dec;132:103971. doi: 10.1016/j.ijmedinf.2019.103971. Epub 2019 Oct 5.
7
FDA MAUDE data on complications with lasers, light sources, and energy-based devices.
Lasers Surg Med. 2015 Feb;47(2):133-40. doi: 10.1002/lsm.22328. Epub 2015 Feb 4.
9
Generating a Health Information Technology Event Database from FDA MAUDE Reports.
Stud Health Technol Inform. 2019 Aug 21;264:883-887. doi: 10.3233/SHTI190350.

本文引用的文献

1
Establishment of a medical device adverse event management system for hospitals.
BMC Health Serv Res. 2022 Nov 24;22(1):1406. doi: 10.1186/s12913-022-08830-5.
2
Causal relationship extraction from biomedical text using deep neural models: A comprehensive survey.
J Biomed Inform. 2021 Jul;119:103820. doi: 10.1016/j.jbi.2021.103820. Epub 2021 May 24.
3
Creating a database for health IT events via a hybrid deep learning model.
J Biomed Inform. 2020 Oct;110:103556. doi: 10.1016/j.jbi.2020.103556. Epub 2020 Sep 9.
4
Medical device active surveillance of spontaneous reports: A literature review of signal detection methods.
Pharmacoepidemiol Drug Saf. 2020 Apr;29(4):369-379. doi: 10.1002/pds.4980. Epub 2020 Mar 3.
5
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
6
Generating a Health Information Technology Event Database from FDA MAUDE Reports.
Stud Health Technol Inform. 2019 Aug 21;264:883-887. doi: 10.3233/SHTI190350.
7
Evidence-based medical equipment management: a convenient implementation.
Med Biol Eng Comput. 2019 Oct;57(10):2215-2230. doi: 10.1007/s11517-019-02021-x. Epub 2019 Aug 10.
8
Real-World Data for Regulatory Decision Making: Challenges and Possible Solutions for Europe.
Clin Pharmacol Ther. 2019 Jul;106(1):36-39. doi: 10.1002/cpt.1426. Epub 2019 Apr 10.
9
Identifying health information technology related safety event reports from patient safety event report databases.
J Biomed Inform. 2018 Oct;86:135-142. doi: 10.1016/j.jbi.2018.09.007. Epub 2018 Sep 10.
10
How do we talk about doctors and drugs? Sentiment analysis in forums expressing opinions for medical domain.
Artif Intell Med. 2019 Jan;93:50-57. doi: 10.1016/j.artmed.2018.03.007. Epub 2018 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验