Suppr超能文献

一种基于正则化的极端梯度提升方法在食源性疾病趋势预测中的应用

A Regularization-Based eXtreme Gradient Boosting Approach in Foodborne Disease Trend Forecasting.

作者信息

Chen Shanen, Xu Jian, Chen Lili, Zhang Xi, Zhang Li, Li Jinfeng

机构信息

Department of Industrial Engineering and Management, Peking University, Beijing, China.

IBM Research - China, Beijing, China.

出版信息

Stud Health Technol Inform. 2019 Aug 21;264:930-934. doi: 10.3233/SHTI190360.

Abstract

Foodborne disease is a growing public health problem worldwide and imposes a considerable economic burden on hospitals and other healthcare costs. Thus, accurately predicting the propagation of foodborne disease is crucial in preventing foodborne disease outbreaks. Few studies have investigated the dependencies between environmental variables and foodborne disease activity. This study develops a regularization-based eXtreme gradient boosting approach for foodborne disease trend forecasting considering environmental effects to capture dependencies hidden in foodborne disease time series. A real case in Shanghai, China was studied to validate our proposed model along with comparisons to traditional and benchmark algorithms for foodborne disease prediction. Results show that the foodborne disease prediction approach we propose achieves slightly superior performance in terms of one-day-ahead prediction of foodborne disease, and presents more robust prediction for 2-7 days ahead prediction.

摘要

食源性疾病是全球范围内日益严重的公共卫生问题,给医院和其他医疗成本带来了相当大的经济负担。因此,准确预测食源性疾病的传播对于预防食源性疾病暴发至关重要。很少有研究调查环境变量与食源性疾病活动之间的相关性。本研究开发了一种基于正则化的极端梯度提升方法,用于考虑环境影响的食源性疾病趋势预测,以捕捉食源性疾病时间序列中隐藏的相关性。以上海的一个实际案例进行研究,以验证我们提出的模型,并与传统和基准算法进行食源性疾病预测比较。结果表明,我们提出的食源性疾病预测方法在食源性疾病提前一天预测方面表现略优,并且在提前2至7天预测方面表现出更强的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验