Suppr超能文献

通过 NMR 研究 CAPRIN1 凝聚相揭示的液-液相分离相互作用热点。

Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase.

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.

Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.

出版信息

Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104897118.

Abstract

The role of biomolecular condensates in regulating biological function and the importance of dynamic interactions involving intrinsically disordered protein regions (IDRs) in their assembly are increasingly appreciated. While computational and theoretical approaches have provided significant insights into IDR phase behavior, establishing the critical interactions that govern condensation with atomic resolution through experiment is more difficult, given the lack of applicability of standard structural biological tools to study these highly dynamic large-scale associated states. NMR can be a valuable method, but the dynamic and viscous nature of condensed IDRs presents challenges. Using the C-terminal IDR (607 to 709) of CAPRIN1, an RNA-binding protein found in stress granules, P bodies, and messenger RNA transport granules, we have developed and applied a variety of NMR methods for studies of condensed IDR states to provide insights into interactions driving and modulating phase separation. We identify ATP interactions with CAPRIN1 that can enhance or reduce phase separation. We also quantify specific side-chain and backbone interactions within condensed CAPRIN1 that define critical sequences for phase separation and that are reduced by -GlcNAcylation known to occur during cell cycle and stress. This expanded NMR toolkit that has been developed for characterizing IDR condensates has generated detailed interaction information relevant for understanding CAPRIN1 biology and informing general models of phase separation, with significant potential future applications to illuminate dynamic structure-function relationships in other biological condensates.

摘要

生物分子凝聚物在调节生物功能中的作用,以及涉及固有无序蛋白区域(IDR)的动态相互作用在其组装中的重要性,越来越受到重视。虽然计算和理论方法为 IDR 相行为提供了重要的见解,但由于缺乏适用于研究这些高度动态大规模相关状态的标准结构生物学工具,通过实验以原子分辨率确定控制凝聚的关键相互作用更加困难。NMR 可以是一种有价值的方法,但凝聚 IDR 的动态和粘性性质带来了挑战。我们使用 CAPRIN1 的 C 端 IDR(607 至 709),这是一种在应激颗粒、P 体和信使 RNA 运输颗粒中发现的 RNA 结合蛋白,开发并应用了各种 NMR 方法来研究凝聚 IDR 状态,以深入了解驱动和调节相分离的相互作用。我们确定了与 CAPRIN1 相互作用的 ATP,这些相互作用可以增强或减少相分离。我们还定量了凝聚的 CAPRIN1 内的特定侧链和骨架相互作用,这些相互作用定义了相分离的关键序列,并且在细胞周期和应激过程中发生的已知的 -GlcNAc 化作用下会减少。为了表征 IDR 凝聚物而开发的这个扩展 NMR 工具包,已经生成了与理解 CAPRIN1 生物学相关的详细相互作用信息,并为相分离的一般模型提供了信息,具有在其他生物凝聚物中阐明动态结构-功能关系的重要潜在未来应用。

相似文献

1
Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104897118.
2
Mapping the per-residue surface electrostatic potential of CAPRIN1 along its phase-separation trajectory.
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2210492119. doi: 10.1073/pnas.2210492119. Epub 2022 Aug 30.
4
Atomic resolution map of the solvent interactions driving SOD1 unfolding in CAPRIN1 condensates.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2408554121. doi: 10.1073/pnas.2408554121. Epub 2024 Aug 22.
5
NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1.
J Am Chem Soc. 2020 Feb 5;142(5):2471-2489. doi: 10.1021/jacs.9b12208. Epub 2020 Jan 21.
6
Surface electrostatics dictate RNA-binding protein CAPRIN1 condensate concentration and hydrodynamic properties.
J Biol Chem. 2023 Jan;299(1):102776. doi: 10.1016/j.jbc.2022.102776. Epub 2022 Dec 7.
7
A delayed decoupling methyl-TROSY pulse sequence for atomic resolution studies of folded proteins and RNAs in condensates.
J Magn Reson. 2024 May;362:107667. doi: 10.1016/j.jmr.2024.107667. Epub 2024 Mar 28.
8
A call to order: Examining structured domains in biomolecular condensates.
J Magn Reson. 2023 Jan;346:107318. doi: 10.1016/j.jmr.2022.107318.
9
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

4
Sequence-based prediction of intermolecular interactions driven by disordered regions.
Science. 2025 May 22;388(6749):eadq8381. doi: 10.1126/science.adq8381.
6
COCOMO2: A Coarse-Grained Model for Interacting Folded and Disordered Proteins.
J Chem Theory Comput. 2025 Feb 25;21(4):2095-2107. doi: 10.1021/acs.jctc.4c01460. Epub 2025 Feb 5.
7
Molecular determinants of condensate composition.
Mol Cell. 2025 Jan 16;85(2):290-308. doi: 10.1016/j.molcel.2024.12.021.
8
Crucial role of the cGAS N terminus in mediating flowable and functional cGAS-DNA condensate formation via DNA interactions.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2411659122. doi: 10.1073/pnas.2411659122. Epub 2025 Jan 16.
10
Conformations of a low-complexity protein in homogeneous and phase-separated frozen solutions.
Biophys J. 2024 Dec 3;123(23):4097-4114. doi: 10.1016/j.bpj.2024.11.001. Epub 2024 Nov 4.

本文引用的文献

1
Phosphorylation-dependent regulation of messenger RNA transcription, processing and translation within biomolecular condensates.
Curr Opin Cell Biol. 2021 Apr;69:30-40. doi: 10.1016/j.ceb.2020.12.007. Epub 2021 Jan 13.
2
Widespread occurrence of the droplet state of proteins in the human proteome.
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33254-33262. doi: 10.1073/pnas.2007670117. Epub 2020 Dec 14.
3
Comparative roles of charge, , and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28795-28805. doi: 10.1073/pnas.2008122117. Epub 2020 Nov 2.
4
Whence Blobs? Phylogenetics of functional protein condensates.
Biochem Soc Trans. 2020 Oct 30;48(5):2151-2158. doi: 10.1042/BST20200355.
5
Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling.
Cell. 2020 Sep 17;182(6):1531-1544.e15. doi: 10.1016/j.cell.2020.07.043. Epub 2020 Aug 25.
6
Partitioning of cancer therapeutics in nuclear condensates.
Science. 2020 Jun 19;368(6497):1386-1392. doi: 10.1126/science.aaz4427.
7
Valence and patterning of aromatic residues determine the phase behavior of prion-like domains.
Science. 2020 Feb 7;367(6478):694-699. doi: 10.1126/science.aaw8653.
8
NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1.
J Am Chem Soc. 2020 Feb 5;142(5):2471-2489. doi: 10.1021/jacs.9b12208. Epub 2020 Jan 21.
10
DEAD-box ATPases are global regulators of phase-separated organelles.
Nature. 2019 Sep;573(7772):144-148. doi: 10.1038/s41586-019-1502-y. Epub 2019 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验