Suppr超能文献

使用 scout 计算机断层扫描图像进行生物指纹阳性患者识别。

Biological fingerprint using scout computed tomographic images for positive patient identification.

机构信息

Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.

出版信息

Med Phys. 2019 Oct;46(10):4600-4609. doi: 10.1002/mp.13779. Epub 2019 Sep 6.

Abstract

PURPOSE

Management of patient identification is an important issue that should be addressed to ensure patient safety while using modern healthcare systems. Patient identification errors can be mainly attributed to human errors or system problems. An error-tolerant system, such as a biometric system, should be able to prevent or mitigate potential misidentification occurrences. Herein, we propose the use of scout computed tomography (CT) images for biometric patient identity verification and present the quantitative accuracy outcomes of using this technique in a clinical setting.

METHODS

Scout CT images acquired from routine examinations of the chest, abdomen, and pelvis were used as biological fingerprints. We evaluated the resemblance of the follow-up with the baseline image by comparing the estimates of the image characteristics using local feature extraction and matching algorithms. The verification performance was evaluated according to the receiver operating characteristic (ROC) curves, area under the ROC curves (AUC), and equal error rates (EER). The closed-set identification performance was evaluated according to the cumulative match characteristic curves and rank-one identification rates (R1).

RESULTS

A total of 619 (383 males, 236 females, age range 21-92 years) patients who underwent baseline and follow-up chest-abdomen-pelvis CT scans on the same CT system were analyzed for verification and closed-set identification. The highest performances of AUC, EER, and R1 were 0.998, 1.22%, and 99.7%, respectively, in the considered evaluation range. Furthermore, to determine whether the performance decreased in the presence of metal artifacts, the patients were classified into two groups, namely scout images with (255 patients) and without (364 patients) metal artifacts, and the significance test was performed for two ROC curves using the unpaired Delong's test. No significant differences were found between the ROC performances in the presence and absence of metal artifacts when using a sufficient number of local features. Our proposed technique demonstrated that the performance was comparable to that of conventional biometrics methods when using chest, abdomen, and pelvis scout CT images. Thus, this method has the potential to discover inadequate patient information using the available chest, abdomen, and pelvis scout CT image; moreover, it can be applied widely to routine adult CT scans where no significant body structure effects due to illness or aging are present.

CONCLUSIONS

Our proposed method can obtain accurate patient information available at the point-of-care and help healthcare providers verify whether a patient's identity is matched accurately. We believe the method to be a key solution for patient misidentification problems.

摘要

目的

患者身份管理是一个重要问题,应予以解决,以确保在使用现代医疗保健系统时患者的安全。患者身份识别错误主要归因于人为错误或系统问题。一个容错系统,如生物识别系统,应该能够预防或减轻潜在的身份识别错误。在此,我们提出使用 scout CT(计算机断层扫描)图像进行生物识别患者身份验证,并介绍在临床环境中使用该技术的定量准确性结果。

方法

scout CT 图像取自胸部、腹部和骨盆的常规检查,作为生物指纹。我们通过比较使用局部特征提取和匹配算法对图像特征的估计来评估后续图像与基线图像的相似性。根据接收者操作特征(ROC)曲线、ROC 曲线下面积(AUC)和相等错误率(EER)评估验证性能。根据累积匹配特征曲线和排名第一的识别率(R1)评估封闭集识别性能。

结果

对在同一 CT 系统上接受基线和随访胸部-腹部-骨盆 CT 扫描的 619 名(383 名男性,236 名女性,年龄 21-92 岁)患者进行了分析,以进行验证和封闭集识别。在考虑的评估范围内,AUC、EER 和 R1 的最高性能分别为 0.998、1.22%和 99.7%。此外,为了确定金属伪影存在时性能是否降低,将患者分为两组,即带有(255 名患者)和不带有(364 名患者)金属伪影的 scout 图像,并使用未配对的 Delong 检验对两条 ROC 曲线进行显著性检验。当使用足够数量的局部特征时,在存在和不存在金属伪影的情况下,ROC 性能没有发现显著差异。我们提出的技术表明,使用胸部、腹部和骨盆 scout CT 图像时,该技术的性能与传统生物识别方法相当。因此,该方法有可能利用现有的胸部、腹部和骨盆 scout CT 图像发现不充分的患者信息;此外,它可以广泛应用于常规成人 CT 扫描,其中由于疾病或衰老导致的身体结构影响不显著。

结论

我们提出的方法可以获得在护理点获得的准确的患者信息,并帮助医疗保健提供者验证患者身份是否准确匹配。我们相信该方法是解决患者身份识别问题的关键方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验