Washington University in St. Louis, Biomedical Engineering Department, St. Louis, Missouri, United States.
Boston University, Electrical and Computer Engineering Department, Boston, Massachusetts, United States.
J Biomed Opt. 2024 Aug;29(8):086001. doi: 10.1117/1.JBO.29.8.086001. Epub 2024 Jul 25.
Traditional diffuse optical tomography (DOT) reconstructions are hampered by image artifacts arising from factors such as DOT sources being closer to shallow lesions, poor optode-tissue coupling, tissue heterogeneity, and large high-contrast lesions lacking information in deeper regions (known as shadowing effect). Addressing these challenges is crucial for improving the quality of DOT images and obtaining robust lesion diagnosis.
We address the limitations of current DOT imaging reconstruction by introducing an attention-based U-Net (APU-Net) model to enhance the image quality of DOT reconstruction, ultimately improving lesion diagnostic accuracy.
We designed an APU-Net model incorporating a contextual transformer attention module to enhance DOT reconstruction. The model was trained on simulation and phantom data, focusing on challenges such as artifact-induced distortions and lesion-shadowing effects. The model was then evaluated by the clinical data.
Transitioning from simulation and phantom data to clinical patients' data, our APU-Net model effectively reduced artifacts with an average artifact contrast decrease of 26.83% and improved image quality. In addition, statistical analyses revealed significant contrast improvements in depth profile with an average contrast increase of 20.28% and 45.31% for the second and third target layers, respectively. These results highlighted the efficacy of our approach in breast cancer diagnosis.
The APU-Net model improves the image quality of DOT reconstruction by reducing DOT image artifacts and improving the target depth profile.
传统的漫射光学断层成像(DOT)重建受到图像伪影的限制,这些伪影源于 DOT 源更接近浅层病变、光极-组织耦合不良、组织异质性以及缺乏深层区域信息的大对比度病变(称为阴影效应)等因素。解决这些挑战对于提高 DOT 图像质量和获得稳健的病变诊断至关重要。
通过引入基于注意力的 U-Net(APU-Net)模型来解决当前 DOT 成像重建的局限性,从而提高 DOT 重建的图像质量,最终提高病变诊断的准确性。
我们设计了一个包含上下文变换注意力模块的 APU-Net 模型来增强 DOT 重建。该模型在模拟和体模数据上进行训练,重点解决了伪影引起的变形和病变阴影效应等挑战。然后,我们使用临床数据对模型进行了评估。
从模拟和体模数据过渡到临床患者的数据,我们的 APU-Net 模型有效地减少了伪影,平均伪影对比度降低了 26.83%,并且提高了图像质量。此外,统计分析显示,在深度轮廓方面的对比度有显著提高,第二和第三个目标层的平均对比度分别增加了 20.28%和 45.31%。这些结果突出了我们的方法在乳腺癌诊断中的有效性。
APU-Net 模型通过减少 DOT 图像伪影和改善目标深度轮廓来提高 DOT 重建的图像质量。