Suppr超能文献

Explainer:用于交互式和可解释机器学习的可视化分析框架。

explAIner: A Visual Analytics Framework for Interactive and Explainable Machine Learning.

作者信息

Spinner Thilo, Schlegel Udo, Schafer Hanna, El-Assady Mennatallah

出版信息

IEEE Trans Vis Comput Graph. 2020 Jan;26(1):1064-1074. doi: 10.1109/TVCG.2019.2934629. Epub 2019 Aug 20.

Abstract

We propose a framework for interactive and explainable machine learning that enables users to (1) understand machine learning models; (2) diagnose model limitations using different explainable AI methods; as well as (3) refine and optimize the models. Our framework combines an iterative XAI pipeline with eight global monitoring and steering mechanisms, including quality monitoring, provenance tracking, model comparison, and trust building. To operationalize the framework, we present explAIner, a visual analytics system for interactive and explainable machine learning that instantiates all phases of the suggested pipeline within the commonly used TensorBoard environment. We performed a user-study with nine participants across different expertise levels to examine their perception of our workflow and to collect suggestions to fill the gap between our system and framework. The evaluation confirms that our tightly integrated system leads to an informed machine learning process while disclosing opportunities for further extensions.

摘要

我们提出了一个用于交互式和可解释机器学习的框架,该框架能让用户:(1)理解机器学习模型;(2)使用不同的可解释人工智能方法诊断模型局限性;以及(3)完善和优化模型。我们的框架将一个迭代的可解释人工智能(XAI)管道与八个全局监测和引导机制相结合,包括质量监测、溯源跟踪、模型比较和信任建立。为了使该框架可操作,我们展示了explAIner,这是一个用于交互式和可解释机器学习的可视化分析系统,它在常用的TensorBoard环境中实例化了所建议管道的所有阶段。我们对九名不同专业水平的参与者进行了用户研究,以考察他们对我们工作流程的看法,并收集建议来填补我们的系统与框架之间的差距。评估证实,我们紧密集成的系统能带来明智的机器学习过程,同时揭示进一步扩展的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验