IEEE Trans Vis Comput Graph. 2020 Jan;26(1):1096-1106. doi: 10.1109/TVCG.2019.2934659. Epub 2019 Aug 20.
Deep learning is increasingly used in decision-making tasks. However, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images often focuses on explaining predictions for single images or neurons. As predictions are often computed from millions of weights that are optimized over millions of images, such explanations can easily miss a bigger picture. We present Summit, an interactive system that scalably and systematically summarizes and visualizes what features a deep learning model has learned and how those features interact to make predictions. Summit introduces two new scalable summarization techniques: (1) activation aggregation discovers important neurons, and (2) neuron-influence aggregation identifies relationships among such neurons. Summit combines these techniques to create the novel attribution graph that reveals and summarizes crucial neuron associations and substructures that contribute to a model's outcomes. Summit scales to large data, such as the ImageNet dataset with 1.2M images, and leverages neural network feature visualization and dataset examples to help users distill large, complex neural network models into compact, interactive visualizations. We present neural network exploration scenarios where Summit helps us discover multiple surprising insights into a prevalent, large-scale image classifier's learned representations and informs future neural network architecture design. The Summit visualization runs in modern web browsers and is open-sourced.
深度学习在决策任务中被越来越多地应用。然而,理解神经网络如何产生最终的预测仍然是一个基本的挑战。现有的关于解释神经网络对图像的预测的工作通常侧重于解释单个图像或神经元的预测。由于预测通常是从经过数百万张图像优化的数百万个权重中计算出来的,因此这种解释很容易错过更大的图景。我们提出了 Summit,这是一个可扩展且系统地总结和可视化深度学习模型学习到的特征以及这些特征如何相互作用以进行预测的交互系统。Summit 引入了两种新的可扩展的总结技术:(1)激活聚合发现重要的神经元,以及 (2)神经元影响聚合识别这些神经元之间的关系。Summit 将这些技术结合起来,创建了新颖的归因图,揭示并总结了对模型结果有贡献的关键神经元关联和子结构。Summit 可扩展到大型数据,如包含 120 万张图像的 ImageNet 数据集,并利用神经网络特征可视化和数据集示例来帮助用户将大型、复杂的神经网络模型提炼为简洁、交互的可视化。我们展示了神经网络探索场景,其中 Summit 帮助我们发现了一个流行的大规模图像分类器的学习表示中的多个令人惊讶的见解,并为未来的神经网络架构设计提供了信息。Summit 可视化在现代网络浏览器中运行,并开源。