Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, F-92290 Châtenay-Malabry CEDEX, France.
Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
Molecules. 2019 Aug 22;24(17):3058. doi: 10.3390/molecules24173058.
The development of nanomedicines for the treatment of neurodegenerative disorders demands innovative nanoarchitectures for combined loading of multiple neuroprotective compounds. We report dual-drug loaded monoolein-based liquid crystalline architectures designed for the encapsulation of a therapeutic protein and a small molecule antioxidant. Catalase (CAT) is chosen as a metalloprotein, which provides enzymatic defense against oxidative stress caused by reactive oxygen species (ROS) such as hydrogen peroxide (HO). Curcumin (CU), solubilized in fish oil, is co-encapsulated as a chosen drug with multiple therapeutic activities, which may favor neuro-regeneration. The prepared self-assembled biomolecular nanoarchitectures are characterized by biological synchrotron small-angle X-ray scattering (BioSAXS) at multiple compositions of the lipid/co-lipid/water phase diagram. Constant fractions of curcumin (an antioxidant) and a PEGylated agent (TPEG) are included with regard to the lipid fraction. Stable cubosome architectures are obtained for several ratios of the lipid ingredients monoolein (MO) and fish oil (FO). The impact of catalase on the structural organization of the cubosome nanocarriers is revealed by the variations of the cubic lattice parameters deduced by BioSAXS. The outcome of the cellular uptake of the dual drug-loaded nanocarriers is assessed by performing a bioassay of catalase peroxidatic activity in lysates of nanoparticle-treated differentiated SH-SY5Y human cells. The obtained results reveal the neuroprotective potential of the in vitro studied cubosomes in terms of enhanced peroxidatic activity of the catalase enzyme, which enables the inhibition of HO accumulation in degenerating neuronal cells.
用于治疗神经退行性疾病的纳米药物的发展需要创新的纳米结构,以实现多种神经保护化合物的联合装载。我们报告了负载双药物的单油醇基液晶结构,旨在封装治疗蛋白和小分子抗氧化剂。过氧化氢酶(CAT)被选为一种金属蛋白,它提供了针对活性氧(ROS)如过氧化氢(HO)引起的氧化应激的酶防御。姜黄素(CU)溶解在鱼油中,作为一种具有多种治疗活性的选择药物与 co 封装,这可能有利于神经再生。所制备的自组装生物分子纳米结构通过脂质/共脂质/水相图的多个组成部分的生物同步加速器小角度 X 射线散射(BioSAXS)进行了表征。考虑到脂质部分,固定比例的姜黄素(抗氧化剂)和聚乙二醇化试剂(TPEG)被包含在内。对于单油酸酯(MO)和鱼油(FO)的脂质成分的几种比例,均获得了稳定的立方纳米载体结构。通过 BioSAXS 推断的立方晶格参数的变化揭示了过氧化氢酶对立方纳米载体结构组织的影响。通过对纳米颗粒处理的分化 SH-SY5Y 人细胞的裂解物中过氧化氢酶过氧化物酶活性进行生物测定,评估了双载药纳米载体的细胞摄取的结果。获得的结果表明,体外研究的立方纳米载体具有神经保护潜力,表现在过氧化氢酶酶的过氧化物酶活性增强,从而能够抑制退化神经元细胞中 HO 的积累。