Department of Chemistry , KAIST , Daejeon 34141 , South Korea.
Kakao Brain , Pangyo , Gyeonggi-do 13494 , South Korea.
J Chem Inf Model. 2019 Sep 23;59(9):3981-3988. doi: 10.1021/acs.jcim.9b00387. Epub 2019 Sep 6.
We propose a novel deep learning approach for predicting drug-target interaction using a graph neural network. We introduce a distance-aware graph attention algorithm to differentiate various types of intermolecular interactions. Furthermore, we extract the graph feature of intermolecular interactions directly from the 3D structural information on the protein-ligand binding pose. Thus, the model can learn key features for accurate predictions of drug-target interaction rather than just memorize certain patterns of ligand molecules. As a result, our model shows better performance than docking and other deep learning methods for both virtual screening (AUROC of 0.968 for the DUD-E test set) and pose prediction (AUROC of 0.935 for the PDBbind test set). In addition, it can reproduce the natural population distribution of active molecules and inactive molecules.
我们提出了一种新的基于图神经网络的药物-靶标相互作用预测的深度学习方法。我们引入了一种距离感知的图注意力算法来区分各种类型的分子间相互作用。此外,我们直接从蛋白质-配体结合构象的 3D 结构信息中提取分子间相互作用的图特征。因此,该模型可以学习关键特征,从而更准确地预测药物-靶标相互作用,而不仅仅是记忆配体分子的某些模式。结果表明,与对接和其他深度学习方法相比,我们的模型在虚拟筛选(DUD-E 测试集的 AUROC 为 0.968)和构象预测(PDBbind 测试集的 AUROC 为 0.935)方面都具有更好的性能。此外,它还可以再现活性分子和非活性分子的自然种群分布。