Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China.
School of Physics and Technology, Lanzhou University, Lanzhou 730000, China.
ACS Chem Neurosci. 2021 Jun 16;12(12):2133-2142. doi: 10.1021/acschemneuro.1c00110. Epub 2021 Jun 3.
Accurate prediction of protein-ligand interactions can greatly promote drug development. Recently, a number of deep-learning-based methods have been proposed to predict protein-ligand binding affinities. However, these methods independently extract the feature representations of proteins and ligands but ignore the relative spatial positions and interaction pairs between them. Here, we propose a virtual screening method based on deep learning, called Deep Scoring, which directly extracts the relative position information and atomic attribute information on proteins and ligands from the docking poses. Furthermore, we use two Resnets to extract the features of ligand atoms and protein residues, respectively, and generate an atom-residue interaction matrix to learn the underlying principles of the interactions between proteins and ligands. This is then followed by a dual attention network (DAN) to generate the attention for two related entities (i.e., proteins and ligands) and to weigh the contributions of each atom and residue to binding affinity prediction. As a result, Deep Scoring outperforms other structure-based deep learning methods in terms of screening performance (area under the receiver operating characteristic curve (AUC) of 0.901 for an unbiased DUD-E version), pose prediction (AUC of 0.935 for PDBbind test set), and generalization ability (AUC of 0.803 for the CHEMBL data set). Finally, Deep Scoring was used to select novel ERK2 inhibitor, and two compounds (D264-0698 and D483-1785) were obtained with potential inhibitory activity on ERK2 through the biological experiments.
准确预测蛋白质-配体相互作用可以极大地促进药物开发。最近,已经提出了许多基于深度学习的方法来预测蛋白质-配体结合亲和力。然而,这些方法独立地提取蛋白质和配体的特征表示,但忽略了它们之间的相对空间位置和相互作用对。在这里,我们提出了一种基于深度学习的虚拟筛选方法,称为 Deep Scoring,它直接从对接构象中提取蛋白质和配体的相对位置信息和原子属性信息。此外,我们使用两个 Resnet 分别提取配体原子和蛋白质残基的特征,并生成原子-残基相互作用矩阵,以学习蛋白质和配体相互作用的潜在原理。然后,采用双注意力网络(DAN)生成两个相关实体(即蛋白质和配体)的注意力,并加权每个原子和残基对结合亲和力预测的贡献。结果,Deep Scoring 在筛选性能(无偏 DUD-E 版本的接收者操作特征曲线下面积(AUC)为 0.901)、构象预测(PDBbind 测试集的 AUC 为 0.935)和泛化能力(CHEMBL 数据集的 AUC 为 0.803)方面均优于其他基于结构的深度学习方法。最后,我们使用 Deep Scoring 选择新型 ERK2 抑制剂,通过生物实验得到了两种具有潜在 ERK2 抑制活性的化合物(D264-0698 和 D483-1785)。