Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA.
ISME J. 2019 Dec;13(12):2998-3010. doi: 10.1038/s41396-019-0488-7. Epub 2019 Aug 23.
A central goal of community ecology is to infer biotic interactions from observed distributions of co-occurring species. Evidence for biotic interactions, however, can be obscured by shared environmental requirements, posing a challenge for statistical inference. Here, we introduce a dynamic statistical model, based on probit regression, that quantifies the effects of spatial and temporal covariance in longitudinal co-occurrence data. We separate the fixed pairwise effects of species occurrences on persistence and colonization rates, a potential signal of direct interactions, from latent pairwise correlations in occurrence, a potential signal of shared environmental responses. We first validate our modeling framework with several simulation studies. Then, we apply the approach to a pressing epidemiological question by examining how human papillomavirus (HPV) types coexist. Our results suggest that while HPV types respond similarly to common host traits, direct interactions are sparse and weak, so that HPV type diversity depends largely on shared environmental drivers. Our modeling approach is widely applicable to microbial communities and provides valuable insights that should lead to more directed hypothesis testing and mechanistic modeling.
群落生态学的一个主要目标是从观察到的共存物种分布中推断生物相互作用。然而,生物相互作用的证据可能会被共同的环境需求所掩盖,这给统计推断带来了挑战。在这里,我们介绍了一种基于概率回归的动态统计模型,该模型量化了纵向共存数据中空间和时间协方差的影响。我们将物种出现对持久性和定居率的固定成对效应(直接相互作用的潜在信号)与出现中的潜在成对相关性(对共同环境响应的潜在信号)区分开来。我们首先使用几项模拟研究验证了我们的建模框架。然后,我们通过研究人乳头瘤病毒 (HPV) 类型的共存来应用该方法来解决一个紧迫的流行病学问题。我们的结果表明,尽管 HPV 类型对常见宿主特征的反应相似,但直接相互作用稀疏且较弱,因此 HPV 类型的多样性在很大程度上取决于共同的环境驱动因素。我们的建模方法广泛适用于微生物群落,并提供了有价值的见解,这应该会导致更有针对性的假设检验和机制建模。