Suppr超能文献

使用可穿戴传感器检测帕金森病步态冻结发作的深度学习技术

Deep learning techniques for detecting freezing of gait episodes in Parkinson's disease using wearable sensors.

作者信息

Al-Adhaileh Mosleh Hmoud, Wadood Asim, Aldhyani Theyazn H H, Khan Safeer, Uddin M Irfan, Al-Nefaie Abdullah H

机构信息

King Salman Center for Disability Research, Riyadh, Saudi Arabia.

Deanship of E-Learning and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia.

出版信息

Front Physiol. 2025 May 1;16:1581699. doi: 10.3389/fphys.2025.1581699. eCollection 2025.

Abstract

Freezing of Gait (FoG) is a disabling motor symptom that characterizes Parkinson's Disease (PD) patients and significantly affects their mobility and quality of life. The paper presents a novel hybrid deep learning framework for the detection of FoG episodes using wearable sensors. The methodology combines CNNs for spatial feature extraction, BiLSTM networks for temporal modeling, and an attention mechanism to enhance interpretability and focus on critical gait features. The approach leverages multimodal datasets, including tDCS FOG, DeFOG, Daily Living, and Hantao's Multimodal, to ensure robustness and generalizability. The proposed model deals with sensor noise, inter-subject variability, and data imbalance through comprehensive preprocessing techniques such as sensor fusion, normalization, and data augmentation. The proposed model achieved an average accuracy of 92.5%, F1-score of 89.3%, and AUC of 0.91, outperforming state-of-the-art methods. Post-training quantization and pruning enabled deployment on edge devices such as Raspberry Pi and Coral TPU, achieving inference latency under 350 ms. Ablation studies show the critical contribution of key architectural components to the model's effectiveness. Optimized to be deployed real-time, it is a potentially promising solution that can help correctly detect FoG, thereby achieving better clinical monitoring and improving patients' outcomes in a controlled as well as real world.

摘要

冻结步态(FoG)是一种致残性运动症状,是帕金森病(PD)患者的特征,会显著影响他们的行动能力和生活质量。本文提出了一种新颖的混合深度学习框架,用于使用可穿戴传感器检测冻结步态发作。该方法结合了用于空间特征提取的卷积神经网络(CNN)、用于时间建模的双向长短期记忆网络(BiLSTM)以及一种注意力机制,以增强可解释性并关注关键步态特征。该方法利用了多模态数据集,包括经颅直流电刺激冻结步态(tDCS FOG)、去冻结步态(DeFOG)、日常生活和汉涛多模态数据集,以确保鲁棒性和通用性。所提出的模型通过诸如传感器融合、归一化和数据增强等综合预处理技术来处理传感器噪声、个体间差异和数据不平衡问题。所提出的模型平均准确率达到92.5%,F1分数为89.3%,曲线下面积(AUC)为0.91,优于现有方法。训练后量化和剪枝使得能够在诸如树莓派和珊瑚TPU等边缘设备上进行部署,推理延迟低于350毫秒。消融研究表明关键架构组件对模型有效性的关键贡献。经过优化可实时部署,它是一个潜在的有前景的解决方案,有助于正确检测冻结步态,从而在受控以及现实世界中实现更好的临床监测并改善患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a011/12079673/c965dcfb16fc/fphys-16-1581699-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验