Suppr超能文献

一种针对富含洼地湿地景观的流域尺度模型。

A watershed-scale model for depressional wetland-rich landscapes.

作者信息

Evenson Grey R, Jones C Nathan, McLaughlin Daniel L, Golden Heather E, Lane Charles R, DeVries Ben, Alexander Laurie C, Lang Megan W, McCarty Gregory W, Sharifi Amirreza

机构信息

Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA.

The National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, USA.

出版信息

J Hydrol X. 2018 Dec 1;1. doi: 10.1016/j.hydroa.2018.10.002.

Abstract

Wetlands are often dominant features in low relief, depressional landscapes and provide an array of hydrologically driven ecosystem services. However, contemporary models do not adequately represent the role of spatially distributed wetlands in watershed-scale water storage and flows. Such tools are critical to better understand wetland hydrological, biogeochemical, and biological functions and predict management and policy outcomes at varying spatial scales. To develop a new approach for simulating depressional landscapes, we modified the Soil and Water Assessment Tool (SWAT) model to incorporate improved representations of depressional wetland structure and hydrological processes. Specifically, we refined the model to incorporate: (1) water storage capacity and surface flowpaths of individual wetlands and (2) local wetland surface and subsurface exchange. We utilized this model, termed SWAT-DSF (DSF for Depressional Storage and Flows), to simulate the ~289 km Greensboro watershed within the Delmarva Peninsula of the US Coastal Plain. Model calibration and verification used both daily streamflow observations and remotely sensed surface water extent data (ca. 2-week temporal resolution), allowing us to assess model performance with respect to both streamflow and watershed inundation patterns. Our findings demonstrate that SWAT-DSF can successfully replicate distributed wetland processes and resultant watershed-scale hydrology. SWAT-DSF provides improved temporal and spatial characterization of watershed-scale water storage and flows in depressional landscapes, providing a new tool to quantify wetland functions at broad spatial scales.

摘要

湿地通常是低起伏、凹陷地貌中的主要特征,提供一系列受水文驱动的生态系统服务。然而,当代模型并未充分体现空间分布的湿地在流域尺度的蓄水和水流中的作用。此类工具对于更好地理解湿地水文、生物地球化学和生物学功能,以及预测不同空间尺度下的管理和政策结果至关重要。为开发一种模拟凹陷地貌的新方法,我们对土壤和水资源评估工具(SWAT)模型进行了修改,以更好地呈现凹陷湿地的结构和水文过程。具体而言,我们对模型进行了优化,纳入了:(1)单个湿地的蓄水能力和地表水流路径,以及(2)当地湿地的地表和地下交换。我们利用这个名为SWAT-DSF(DSF代表凹陷蓄水和水流)的模型,来模拟美国沿海平原德尔马瓦半岛内约289平方公里的格林斯伯勒流域。模型校准和验证使用了每日河流流量观测数据以及遥感地表水范围数据(约两周的时间分辨率),使我们能够评估模型在河流流量和流域淹没模式方面的性能。我们的研究结果表明,SWAT-DSF能够成功复制分布式湿地过程以及由此产生的流域尺度水文情况。SWAT-DSF改进了凹陷地貌中流域尺度蓄水和水流的时空特征描述,为在广泛空间尺度上量化湿地功能提供了一种新工具。

相似文献

1
A watershed-scale model for depressional wetland-rich landscapes.
J Hydrol X. 2018 Dec 1;1. doi: 10.1016/j.hydroa.2018.10.002.
2
Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions.
Ecol Appl. 2018 Jun;28(4):953-966. doi: 10.1002/eap.1701. Epub 2018 May 7.
4
Estimating restorable wetland water storage at landscape scales.
Hydrol Process. 2018;32(2):305-313. doi: 10.1002/hyp.11405.
5
Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters: A catchment modeling approach - Part 2.
Sci Total Environ. 2019 Feb 25;653:1557-1570. doi: 10.1016/j.scitotenv.2018.11.237. Epub 2018 Nov 20.
6
A Hydrologic Landscapes Perspective on Groundwater Connectivity of Depressional Wetlands.
Water (Basel). 2019 Dec 21;12(1):50. doi: 10.3390/w12010050.
7
Modeling the hydrological significance of wetland restoration scenarios.
J Environ Manage. 2014 Jan 15;133:121-34. doi: 10.1016/j.jenvman.2013.11.046. Epub 2013 Dec 25.
10
Synergistic effects of precipitation and groundwater extraction on freshwater wetland inundation.
J Environ Manage. 2023 Jul 1;337:117690. doi: 10.1016/j.jenvman.2023.117690. Epub 2023 Mar 16.

引用本文的文献

1
Mapping global non-floodplain wetlands.
Earth Syst Sci Data. 2023 Jul 11;15(7):2927-2955. doi: 10.5194/essd-15-2927-2023.
3
Modeling Connectivity of Non-floodplain Wetlands: Insights, Approaches, and Recommendations.
J Am Water Resour Assoc. 2019 May 1;55(3):559-577. doi: 10.1111/1752-1688.12735.
4
Surface Depression and Wetland Water Storage Improves Major River Basin Hydrologic Predictions.
Water Resour Res. 2020 Jul 6;56(7):e2019WR026561. doi: 10.1029/2019WR026561.

本文引用的文献

2
Modeling Connectivity of Non-floodplain Wetlands: Insights, Approaches, and Recommendations.
J Am Water Resour Assoc. 2019 May 1;55(3):559-577. doi: 10.1111/1752-1688.12735.
4
Integrating geographically isolated wetlands into land management decisions.
Front Ecol Environ. 2017 Aug;15(6):319-327. doi: 10.1002/fee.1504.
5
Estimating restorable wetland water storage at landscape scales.
Hydrol Process. 2018;32(2):305-313. doi: 10.1002/hyp.11405.
6
Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions.
Ecol Appl. 2018 Jun;28(4):953-966. doi: 10.1002/eap.1701. Epub 2018 May 7.
8
Evaluation of the current state of distributed watershed nutrient water quality modeling.
Environ Sci Technol. 2015 Mar 17;49(6):3278-90. doi: 10.1021/es5049557. Epub 2015 Mar 4.
10
Long-term history of chesapeake bay anoxia.
Science. 1991 Nov 15;254(5034):992-6. doi: 10.1126/science.254.5034.992.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验