Wua Qiusheng, Lane Charles R, Li Xuecao, Zhao Kaiguang, Zhou Yuyu, Clinton Nicholas, DeVries Ben, Golden Heather E, Lang Megan W
Department of Geography, University of Tennessee, Knoxville, TN 37996, USA.
U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
Remote Sens Environ. 2019 Jul 1;228:1-13. doi: 10.1016/j.rse.2019.04.015.
The Prairie Pothole Region of North America is characterized by millions of depressional wetlands, which provide critical habitats for globally significant populations of migratory waterfowl and other wildlife species. Due to their relatively small size and shallow depth, these wetlands are highly sensitive to climate variability and anthropogenic changes, exhibiting inter- and intra-annual inundation dynamics. Moderate-resolution satellite imagery (e.g., Landsat, Sentinel) alone cannot be used to effectively delineate these small depressional wetlands. By integrating fine spatial resolution Light Detection and Ranging (LiDAR) data and multi-temporal (2009-2017) aerial images, we developed a fully automated approach to delineate wetland inundation extent at watershed scales using Google Earth Engine. Machine learning algorithms were used to classify aerial imagery with additional spectral indices to extract potential wetland inundation areas, which were further refined using LiDAR-derived landform depressions. The wetland delineation results were then compared to the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) geospatial dataset and existing global-scale surface water products to evaluate the performance of the proposed method. We tested the workflow on 26 watersheds with a total area of 16,576 km in the Prairie Pothole Region. The results showed that the proposed method can not only delineate current wetland inundation status but also demonstrate wetland hydrological dynamics, such as wetland coalescence through fill-spill hydrological processes. Our automated algorithm provides a practical, reproducible, and scalable framework, which can be easily adapted to delineate wetland inundation dynamics at broad geographic scales.
北美草原坑洼地区有数以百万计的洼地湿地,为全球数量众多的迁徙水鸟和其他野生动物物种提供了关键栖息地。由于这些湿地面积相对较小且深度较浅,它们对气候变化和人为变化高度敏感,呈现出年际和年内的淹没动态。仅靠中等分辨率的卫星图像(如陆地卫星、哨兵卫星图像)无法有效勾勒出这些小型洼地湿地。通过整合高空间分辨率的激光雷达数据和多时段(2009 - 2017年)航空图像,我们利用谷歌地球引擎开发了一种全自动方法,用于在流域尺度上勾勒湿地淹没范围。机器学习算法被用于结合额外的光谱指数对航空图像进行分类,以提取潜在的湿地淹没区域,这些区域再利用激光雷达衍生的地形洼地进一步细化。然后将湿地勾勒结果与美国鱼类和野生动物管理局的国家湿地清单(NWI)地理空间数据集以及现有的全球尺度地表水产品进行比较,以评估所提方法的性能。我们在草原坑洼地区总面积为16576平方千米的26个流域上测试了该工作流程。结果表明,所提方法不仅能够勾勒当前湿地的淹没状况,还能展示湿地水文动态,如通过充填 - 溢流水文过程实现的湿地合并。我们的自动算法提供了一个实用、可重复且可扩展的框架,该框架可轻松适用于在广泛地理尺度上勾勒湿地淹没动态。