Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy.
Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
Small. 2019 Oct;15(42):e1902534. doi: 10.1002/smll.201902534. Epub 2019 Aug 25.
A comprehensive understanding of electrochemical and physical phenomena originating the response of electrolyte-gated transistors is crucial for improved handling and design of these devices. However, the lack of suitable tools for direct investigation of microscale effects has hindered the possibility to bridge the gap between experiments and theoretical models. In this contribution, a scanning probe setup is used to explore the operation mechanisms of organic electrochemical transistors by probing the local electrochemical potential of the organic film composing the device channel. Moreover, an interpretative model is developed in order to highlight the meaning of electrochemical doping and to show how the experimental data can give direct access to fundamental device parameters, such as local charge carrier concentration and mobility. This approach is versatile and provides insight into the organic semiconductor/electrolyte interface and useful information for materials characterization, device scaling, and sensing optimization.
全面理解电解质门控晶体管响应所产生的电化学和物理现象对于改善这些器件的处理和设计至关重要。然而,缺乏用于直接研究微观效应的合适工具,阻碍了将实验和理论模型联系起来的可能性。在本研究中,通过探测构成器件通道的有机薄膜的局部电化学势,扫描探针装置用于探索有机电化学晶体管的工作机制。此外,还开发了一种解释性模型,以突出电化学掺杂的意义,并展示实验数据如何直接获得基本器件参数,如局部载流子浓度和迁移率。这种方法具有通用性,可以深入了解有机半导体/电解质界面,并为材料特性、器件缩放和传感优化提供有用的信息。