Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China.
School of Public Health , Xinxiang Medical University , Xinxiang 453003 , China.
ACS Sens. 2019 Sep 27;4(9):2450-2457. doi: 10.1021/acssensors.9b01049. Epub 2019 Sep 6.
Hydrogen peroxide (HO) plays a persuasive role in the human cell physiology. Developing an efficient assay platform and a highly sensitive tracking and quantification of HO in a physiological system is crucial to understand the neoplastic changes and/or redox homeostasis of cells. In this study, a novel turn-on latent electrochemical redox probe coupled with electrocatalytic signal amplification strategy is proposed. A custom-made readily available turn-on latent electrochemical probe 4-methoxyphenylboronic acid pinacol ester (4-MPBP) have been designed for the selective detection of endogenous HO in live cells. The electrochemical probe composed of a latent electrochemical reporter (4-methoxy phenol, 4-MP) bearing a recognition unit (boronic acid pinacol ester) for HO sensing. The selective analyte-triggered chemical transformation releases free electrochemical reporter 4-MP. The amount of HO was evaluated electrochemically at glassy carbon electrode (GCE) with a broad detection range of 0.5 μM-1 mM. An amplified signal response of released 4-MP to build a highly sensitive assay tool has been achieved via replacing the GCE transducer electrode with polydopamine@carbonnanotube-molebtinumdisulfie hybrid modified GCE as it delivered an exceptional dynamic detection range of 0.01-100 μM. The innovative blend of electrochemical molecular probe strategy, with electrocatalytic signal amplification technique has delivered outstanding assay performance at trace level sensing of HO. Next, we set up a platform for real-time in vivo monitoring of the endogenously produced HO in Caco-2 and MCF-7 cells through spermine-polyamine analogue and phorbol 12-myristate 13-acetate induction in SSAT/PAO gene and protein kinase C, respectively. As expected, the 4-MPBP latent probe coupled with electrocatalytic signal amplification strategy delivered outstanding performance for in situ HO release and tracking over time.
过氧化氢(HO)在人体细胞生理学中起着重要作用。开发一种高效的分析平台,并对生理系统中的 HO 进行高度敏感的跟踪和定量,对于理解细胞的肿瘤变化和/或氧化还原稳态至关重要。在本研究中,提出了一种新型的基于电催化信号放大策略的开环潜伏电化学氧化还原探针。设计了一种定制的现成的开环潜伏电化学探针 4-甲氧基苯硼酸频哪醇酯(4-MPBP),用于选择性检测活细胞内的内源性 HO。该电化学探针由一个潜伏的电化学报告器(带有识别单元的 4-甲氧基苯酚,4-MP)和一个用于 HO 传感的硼酸频哪醇酯组成。选择性分析物触发的化学转化释放出游离的电化学报告器 4-MP。通过玻碳电极(GCE)电化学评估 HO 的含量,检测范围为 0.5 μM-1 mM。通过用聚多巴胺@碳纳米管-二硫化钼杂化修饰的 GCE 取代 GCE 换能器电极,实现了对释放的 4-MP 的放大信号响应,从而构建了一种高灵敏度的分析工具,其动态检测范围为 0.01-100 μM。电化学分子探针策略与电催化信号放大技术的创新结合,为 HO 的痕量传感提供了出色的分析性能。接下来,我们通过分别在 SSAT/PAO 基因和蛋白激酶 C 中诱导多胺类似物和佛波醇 12-肉豆蔻酸 13-乙酸,在 Caco-2 和 MCF-7 细胞中建立了实时监测内源性产生的 HO 的平台。正如预期的那样,4-MPBP 潜伏探针与电催化信号放大策略相结合,在原位 HO 释放和随时间跟踪方面表现出出色的性能。