Harks Peter-Paul R M L, Verhallen Tomas W, George Chandramohan, van den Biesen Jan Karel, Liu Qian, Wagemaker Marnix, Mulder Fokko M
Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering , Delft University of Technology , P.O. Box 5045, 2600 GA Delft , The Netherlands.
Department of Radiation Science and Technology , Delft University of Technology , Mekelweg 15 , 2629 JB , Delft , The Netherlands.
J Am Chem Soc. 2019 Sep 11;141(36):14280-14287. doi: 10.1021/jacs.9b05993. Epub 2019 Aug 30.
The commercial uptake of lithium-sulfur (Li-S) batteries is undermined by their rapid performance decay and short cycle life. These problems originate from the dissolution of lithium polysulfide in liquid electrolytes, causing charge and active material to shuttle between electrodes. The dynamics of intractable polysulfide migration at different length scales often tend to escape the probing ability of many analytical techniques. Spatial and temporal visualization of Li in Li-S electrodes and direct mechanistic understanding of how polysulfides are regulated across Li-S batteries starting from current collector and active layer coating to electrode-electrolyte interface are still lacking. To address this we employ neutron depth profiling across Li-S electrodes using the naturally occurring isotope, Li, which yields direct spatial information on Li-S electrochemistry. Using three types of Li-S electrodes, namely, carbon-sulfur, carbon-sulfur with 10% lithium titanium oxide (LTO), and carbon-sulfur with LTO membrane, we provide direct evidence for the migration, adsorption, and confinement of polysulfides in Li-S cells at work. Our findings further provide insights into the dynamics of polysulfide dissolution and re-utilization in relation to Li-S battery capacity and longevity to aid rational electrode designs toward high-energy, safe, and low-cost batteries.
锂硫(Li-S)电池的商业应用受到其快速的性能衰减和较短的循环寿命的影响。这些问题源于多硫化锂在液体电解质中的溶解,导致电荷和活性材料在电极之间穿梭。在不同长度尺度上难以处理的多硫化物迁移动力学往往超出了许多分析技术的探测能力。目前仍缺乏对Li-S电极中锂的空间和时间可视化,以及从集流体和活性层涂层到电极-电解质界面的整个Li-S电池中多硫化物如何被调控的直接机理理解。为了解决这个问题,我们使用天然存在的同位素锂对Li-S电极进行中子深度剖析,从而获得有关Li-S电化学的直接空间信息。通过使用三种类型的Li-S电极,即碳硫电极、含10%锂钛氧化物(LTO)的碳硫电极和含LTO膜的碳硫电极,我们为工作中的Li-S电池中多硫化物的迁移、吸附和限制提供了直接证据。我们的研究结果进一步深入了解了多硫化物溶解和再利用的动力学与Li-S电池容量和寿命的关系,以帮助设计出高能、安全和低成本电池的合理电极。