Amoah Benjamin, Diggle Peter J, Giorgi Emanuele
CHICAS, Lancaster University Medical School, Lancaster, UK.
Biometrics. 2020 Mar;76(1):158-170. doi: 10.1111/biom.13142. Epub 2019 Oct 29.
Multiple diagnostic tests are often used due to limited resources or because they provide complementary information on the epidemiology of a disease under investigation. Existing statistical methods to combine prevalence data from multiple diagnostics ignore the potential overdispersion induced by the spatial correlations in the data. To address this issue, we develop a geostatistical framework that allows for joint modelling of data from multiple diagnostics by considering two main classes of inferential problems: (a) to predict prevalence for a gold-standard diagnostic using low-cost and potentially biased alternative tests; (b) to carry out joint prediction of prevalence from multiple tests. We apply the proposed framework to two case studies: mapping Loa loa prevalence in Central and West Africa, using miscroscopy, and a questionnaire-based test called RAPLOA; mapping Plasmodium falciparum malaria prevalence in the highlands of Western Kenya using polymerase chain reaction and a rapid diagnostic test. We also develop a Monte Carlo procedure based on the variogram in order to identify parsimonious geostatistical models that are compatible with the data. Our study highlights (a) the importance of accounting for diagnostic-specific residual spatial variation and (b) the benefits accrued from joint geostatistical modelling so as to deliver more reliable and precise inferences on disease prevalence.
由于资源有限或多种诊断测试能提供有关所研究疾病流行病学的补充信息,所以常常会使用多种诊断测试。现有的用于合并多种诊断测试患病率数据的统计方法忽略了数据中空间相关性所导致的潜在过度离散。为解决这一问题,我们开发了一个地理统计框架,该框架通过考虑两类主要的推断问题,对来自多种诊断测试的数据进行联合建模:(a)使用低成本且可能有偏差的替代测试来预测金标准诊断的患病率;(b)对多种测试的患病率进行联合预测。我们将所提出的框架应用于两个案例研究:利用显微镜检查和一种名为RAPLOA的基于问卷的测试,绘制中非和西非罗阿丝虫病的患病率地图;利用聚合酶链反应和快速诊断测试,绘制肯尼亚西部高地恶性疟原虫疟疾的患病率地图。我们还基于变差函数开发了一种蒙特卡罗程序,以识别与数据兼容的简约地理统计模型。我们的研究强调了(a)考虑特定诊断的残余空间变异的重要性,以及(b)联合地理统计建模所带来的益处,以便对疾病患病率做出更可靠、精确的推断。