Thoren Corinna Ten, Schwalm Anja, Mostardt Sarah, Weber Dietmar, Ihle Peter, Altenhofen Lutz
Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen IQWiG, Gesundheitsökonomie, Köln, Germany.
Diabetologische Schwerpunktpraxis, Köln, Germany.
Gesundheitswesen. 2020 Mar;82(S 01):S13-S19. doi: 10.1055/a-0948-5301. Epub 2019 Aug 26.
Since 2011, early benefit assessment of all new drugs launched in Germany is mandatory. The exact determination of the appropriate target population (i. e. patients eligible for a drug) plays an important role for subsequent price negotiations. In type 2 diabetes, the size of the target population varies considerably between company dossiers submitted for assessment. Our aim was to explore whether routine data from all persons insured in German statutory health insurance (SHI) funds can be used to derive information on the size of the target population with type 2 diabetes.
We explored how the data available at the German Institute of Medical Documentation and Information (DIMDI) can be used to obtain the information required. A data-based concept was chosen and the selection criteria were developed in a multidisciplinary project group. Before finalizing the database query, the criteria were evaluated in a test database and the database query was then repeatedly modified.
At the time of the design of our analysis in 2017, the most recent data available at DIMDI were for 2013. The algorithm we developed for identifying patients with type 2 diabetes and classifying them according to their medication, based primarily on the combination of ICD and ATC codes, enabled us to determine the size of target populations for different indications in diabetes mellitus type 2.
Our methodological approach seems to be suitable to determine target populations in type 2 diabetes.
自2011年起,对在德国上市的所有新药进行早期效益评估成为强制性要求。准确确定合适的目标人群(即符合使用某种药物条件的患者)对于后续的价格谈判至关重要。在2型糖尿病中,提交评估的各公司档案中目标人群的规模差异很大。我们的目的是探讨能否利用德国法定医疗保险(SHI)基金所有参保人员的常规数据来获取有关2型糖尿病目标人群规模的信息。
我们探讨了如何利用德国医学文献与信息研究所(DIMDI)现有的数据来获取所需信息。选择了基于数据的概念,并在一个多学科项目组中制定了选择标准。在确定数据库查询之前,在测试数据库中对标准进行了评估,然后对数据库查询进行了反复修改。
在我们于2017年设计分析时,DIMDI可获取的最新数据是2013年的。我们开发的用于识别2型糖尿病患者并根据其用药情况进行分类的算法,主要基于国际疾病分类(ICD)和解剖学治疗学化学分类系统(ATC)代码的组合,使我们能够确定2型糖尿病不同适应症的目标人群规模。
我们的方法似乎适用于确定2型糖尿病的目标人群。