Suppr超能文献

古菌是 Wood-Ljungdahl HMPT 分支的起源,也是细菌甲基营养作用出现的源头。

An archaeal origin of the Wood-Ljungdahl HMPT branch and the emergence of bacterial methylotrophy.

机构信息

Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France.

Université Paris Diderot, Sorbonne Paris Cité, Paris, France.

出版信息

Nat Microbiol. 2019 Dec;4(12):2155-2163. doi: 10.1038/s41564-019-0534-2. Epub 2019 Aug 26.

Abstract

The tetrahydromethanopterin (HMPT) methyl branch of the Wood-Ljungdahl pathway is shared by archaeal and bacterial metabolisms that greatly contribute to the global carbon budget and greenhouse gas fluxes: methanogenesis and methylotrophy, including methanotrophy. It has been proposed that the HMPT branch dates back to the last universal common ancestor. Interestingly, it has been identified in numerous recently sequenced and mostly uncultured non-methanogenic and non-methylotrophic archaeal and bacterial lineages, where its function remains unclear. Here, we have examined the distribution and phylogeny of the enzymes involved in the HMPT branch and the biosynthesis of its cofactors in over 6,400 archaeal and bacterial genomes. We find that a full Wood-Ljungdahl HMPT pathway is widespread in Archaea and is likely ancestral to this domain, whereas this is not the case for Bacteria. Moreover, the inclusion of recently sequenced lineages leads to an important shortening of the branch separating Archaea and Bacteria with respect to previous phylogenies of the HMPT branch. Finally, the genes for the pathway are colocalized in many of the recently sequenced archaeal lineages, similar to bacteria. Together, these results weaken the last universal common ancestor hypothesis and rather favour an origin of the HMPT branch in Archaea and its subsequent transfer to Bacteria. We propose a scenario for its potential initial role in the first bacterial recipients and its evolution up to the emergence of aerobic methylotrophy. Finally, we discuss how an ancient horizontal transfer not only triggered the emergence of key metabolic processes but also important transitions in Earth's history.

摘要

四氢蝶呤(HMPT)甲基支链是古菌和细菌代谢所共有的,对全球碳预算和温室气体通量有很大贡献:产甲烷作用和甲基营养作用,包括甲烷营养作用。有人提出,HMPT 支链可以追溯到最后一个普遍共同祖先。有趣的是,它已经在许多最近测序的、大多数未培养的非产甲烷和非甲基营养的古菌和细菌谱系中被识别出来,但它的功能仍不清楚。在这里,我们研究了 HMPT 支链中涉及的酶的分布和系统发育以及其辅因子在超过 6400 个古菌和细菌基因组中的生物合成。我们发现,完整的 Wood-Ljungdahl HMPT 途径在古菌中广泛存在,并且可能是该领域的祖先,而在细菌中则不是这样。此外,包括最近测序的谱系会导致 HMPT 分支与古菌和细菌之间的分支分离的重要缩短,与之前的 HMPT 分支系统发育相比。最后,该途径的基因在许多最近测序的古菌谱系中都有共定位,与细菌相似。总之,这些结果削弱了最后一个普遍共同祖先假说,而支持 HMPT 分支在古菌中的起源及其随后向细菌的转移。我们提出了一个关于其在第一批细菌受体中潜在初始作用及其进化到有氧甲基营养作用的出现的情景。最后,我们讨论了古老的水平转移不仅如何引发了关键代谢过程的出现,而且还引发了地球历史上的重要转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验