Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, England, UK.
STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX, UK.
Phys Chem Chem Phys. 2019 Sep 21;21(35):19311-19317. doi: 10.1039/c9cp03630j. Epub 2019 Aug 27.
Semiconducting quaternary chalcogenides with AZnBQ stoichiometry, where A and B are monovalent and tetravalent metal ions and Q is a chalcogen (e.g. CuZnSnS or CZTS) have recently attracted attention as potential solar-cell absorbers made from abundant and non-toxic elements. Unfortunately, they exhibit relatively poor sunlight conversion efficiencies, which has been linked to site disorder within the tetrahedral cation sub-lattice. In order to gain a better understanding of the factors controlling cation disorder in these chalcogenides, we have used powder neutron diffraction, coupled with Density Functional Theory (DFT) simulations, to investigate the detailed structure of AZnBQ phases, with A = Cu, Ag; B = Sn, Ge; and Q = S, Se. Both DFT calculations and powder neutron diffraction data demonstrate that the kesterite structure (space group: I4[combining macron]) is adopted in preference to the higher-energy stannite structure (space group: I4[combining macron]2m). The contrast between the constituent cations afforded by neutron diffraction reveals that copper and zinc cations are only partially ordered in the kesterites CuZnBQ (B = Sn, Ge), whereas the silver-containing phases are fully ordered. The degree of cation order in the copper-containing phases shows a greater sensitivity to the identity of the B-cation than to the chalcogenide anion. DFT indicates that cation ordering minimises inter-planar ZnZn electrostatic interactions, while there is an additional intra-planar energy contribution associated with size mismatch. The complete Ag/Zn order in AgZnBQ (B = Sn, Ge) phases can thus be related to the anisotropic expansion of the unit cell on replacing Cu with Ag.
具有 AZnBQ 化学计量比的半导体四元硫属化物,其中 A 和 B 是单价和四价金属离子,Q 是硫属元素(例如 CuZnSnS 或 CZTS),最近作为由丰富且无毒元素制成的潜在太阳能电池吸收体引起了关注。不幸的是,它们表现出相对较差的阳光转换效率,这与四面体阳离子亚晶格内的位置无序有关。为了更好地了解控制这些硫属化物中阳离子无序的因素,我们使用粉末中子衍射,结合密度泛函理论(DFT)模拟,研究了 AZnBQ 相的详细结构,其中 A = Cu、Ag;B = Sn、Ge;和 Q = S、Se。DFT 计算和粉末中子衍射数据均表明,纤锌矿结构(空间群:I4[combining macron])优先采用高于能量的闪锌矿结构(空间群:I4[combining macron]2m)。中子衍射提供的组成阳离子之间的对比表明,铜和锌阳离子在纤锌矿 CuZnBQ(B = Sn、Ge)中仅部分有序,而含银的相则完全有序。含铜相中的阳离子有序度对 B-阳离子的身份比对硫属阴离子更为敏感。DFT 表明阳离子有序化最小化了 ZnZn 静电相互作用,而与尺寸不匹配相关的还有额外的层内能量贡献。因此,AgZnBQ(B = Sn、Ge)相中完全的 Ag/Zn 有序可以与用 Ag 替代 Cu 时单元胞的各向异性膨胀相关联。