Suppr超能文献

利用深度卷积神经网络在数字全息成像中进行单细胞水平的无搜索聚焦预测。

No-search focus prediction at the single cell level in digital holographic imaging with deep convolutional neural network.

作者信息

Jaferzadeh Keyvan, Hwang Seung-Hyeon, Moon Inkyu, Javidi Bahram

机构信息

Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology, Dalseong-gun, Daegu, 42988, South Korea.

Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-4157, USA.

出版信息

Biomed Opt Express. 2019 Jul 31;10(8):4276-4289. doi: 10.1364/BOE.10.004276. eCollection 2019 Aug 1.

Abstract

Digital propagation of an off-axis hologram can provide the quantitative phase-contrast image if the exact distance between the sensor plane (such as CCD) and the reconstruction plane is correctly provided. In this paper, we present a deep-learning convolutional neural network with a regression layer as the top layer to estimate the best reconstruction distance. The experimental results obtained using microsphere beads and red blood cells show that the proposed method can accurately predict the propagation distance from a filtered hologram. The result is compared with the conventional automatic focus-evaluation function. Additionally, our approach can be utilized at the single-cell level, which is useful for cell-to-cell depth measurement and cell adherent studies.

摘要

如果能正确给出传感器平面(如电荷耦合器件)与重建平面之间的精确距离,离轴全息图的数字传播就能提供定量相衬图像。在本文中,我们提出了一种深度学习卷积神经网络,其顶层为回归层,用于估计最佳重建距离。使用微球珠和红细胞获得的实验结果表明,该方法能够从滤波后的全息图中准确预测传播距离。将结果与传统的自动聚焦评估函数进行了比较。此外,我们的方法可用于单细胞水平,这对于细胞间深度测量和细胞粘附研究很有用。

相似文献

引用本文的文献

2
On the use of deep learning for phase recovery.关于深度学习在相位恢复中的应用。
Light Sci Appl. 2024 Jan 1;13(1):4. doi: 10.1038/s41377-023-01340-x.
4
Advances in Digital Holographic Interferometry.数字全息干涉测量技术的进展
J Imaging. 2022 Jul 12;8(7):196. doi: 10.3390/jimaging8070196.
5
Deep learning in optical metrology: a review.光学计量中的深度学习:综述
Light Sci Appl. 2022 Feb 23;11(1):39. doi: 10.1038/s41377-022-00714-x.

本文引用的文献

6
All-optical machine learning using diffractive deep neural networks.基于衍射深度神经网络的全光机器学习。
Science. 2018 Sep 7;361(6406):1004-1008. doi: 10.1126/science.aat8084. Epub 2018 Jul 26.
8
Oscillating Chiral-Nematic Fingerprints Wipe Away Dust.手性近晶相指纹状结构的动态擦除灰尘。
Adv Mater. 2018 Mar;30(11). doi: 10.1002/adma.201704970. Epub 2018 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验