Suppr超能文献

线性回归卷积神经网络在血管内光学相干断层扫描中的全自动冠状动脉管腔分割。

Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography.

机构信息

University of Malaya, Faculty of Engineering, Department of Biomedical Engineering, Kuala Lumpur, Malaysia.

University of Malaya, Faculty of Medicine, Department of Biomedical Imaging, Kuala Lumpur, Malaysia.

出版信息

J Biomed Opt. 2017 Dec;22(12):1-9. doi: 10.1117/1.JBO.22.12.126005.

Abstract

Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.

摘要

血管内光学相干断层扫描(OCT)是一种常用于经皮冠状动脉介入治疗期间评估冠状动脉疾病的光学成像方式。手动分割 OCT 回撤扫描以评估管腔狭窄是具有挑战性且耗时的。我们提出了一种线性回归卷积神经网络,用于自动执行基于导管质心在极坐标空间中的径向距离的血管腔分割。与金标准手动分割进行基准测试,我们提出的算法在血管壁的位置准确性方面的平均误差为 22 微米,在 Dice 系数和 Jaccard 相似性指数方面的平均误差分别为 0.985 和 0.970。管腔面积估计的平均绝对误差为 1.38%。处理速度为每张图像 40.6 毫秒,这表明它有可能被纳入临床工作流程,并在手术过程中提供血管腔的定量评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验