文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自愈水凝胶:组织工程学的下一次范式转变?

Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?

作者信息

Talebian Sepehr, Mehrali Mehdi, Taebnia Nayere, Pennisi Cristian Pablo, Kadumudi Firoz Babu, Foroughi Javad, Hasany Masoud, Nikkhah Mehdi, Akbari Mohsen, Orive Gorka, Dolatshahi-Pirouz Alireza

机构信息

Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong NSW 2522 Australia.

Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia.

出版信息

Adv Sci (Weinh). 2019 Jun 14;6(16):1801664. doi: 10.1002/advs.201801664. eCollection 2019 Aug 21.


DOI:10.1002/advs.201801664
PMID:31453048
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6702654/
Abstract

Given their durability and long-term stability, self-healable hydrogels have, in the past few years, emerged as promising replacements for the many brittle hydrogels currently being used in preclinical or clinical trials. To this end, the incompatibility between hydrogel toughness and rapid self-healing remains unaddressed, and therefore most of the self-healable hydrogels still face serious challenges within the dynamic and mechanically demanding environment of human organs/tissues. Furthermore, depending on the target tissue, the self-healing hydrogels must comply with a wide range of properties including electrical, biological, and mechanical. Notably, the incorporation of nanomaterials into double-network hydrogels is showing great promise as a feasible way to generate self-healable hydrogels with the above-mentioned attributes. Here, the recent progress in the development of multifunctional and self-healable hydrogels for various tissue engineering applications is discussed in detail. Their potential applications within the rapidly expanding areas of bioelectronic hydrogels, cyborganics, and soft robotics are further highlighted.

摘要

鉴于其耐久性和长期稳定性,自愈合水凝胶在过去几年中已成为有前途的替代品,可取代目前在临床前或临床试验中使用的许多脆性水凝胶。为此,水凝胶韧性与快速自愈合之间的不相容性仍未得到解决,因此,大多数自愈合水凝胶在人体器官/组织动态且对机械性能要求较高的环境中仍面临严峻挑战。此外,根据目标组织的不同,自愈合水凝胶必须具备包括电学、生物学和机械性能在内的多种性能。值得注意的是,将纳米材料掺入双网络水凝胶中作为一种可行的方法,有望制备出具有上述特性的自愈合水凝胶。在此,详细讨论了用于各种组织工程应用的多功能自愈合水凝胶的最新进展。还进一步强调了它们在生物电子水凝胶、赛博格有机物和软机器人等快速发展领域的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/9b7e2707b3c5/ADVS-6-1801664-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/487b2cfde273/ADVS-6-1801664-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/b0578b7cedeb/ADVS-6-1801664-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/6b5719eaab85/ADVS-6-1801664-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/4fd945c6505b/ADVS-6-1801664-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/70c97860b735/ADVS-6-1801664-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/06ee8c88e11f/ADVS-6-1801664-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/4b526dfcf7ab/ADVS-6-1801664-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/7562371b2f3a/ADVS-6-1801664-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/42cfa6e3fd1e/ADVS-6-1801664-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/7bbe6374172d/ADVS-6-1801664-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/e63cf272edc8/ADVS-6-1801664-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/80211970e90b/ADVS-6-1801664-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/b76c019c39c0/ADVS-6-1801664-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/bd6f89e196a1/ADVS-6-1801664-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/dc42ddce2d6a/ADVS-6-1801664-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/cd7cbf7f5890/ADVS-6-1801664-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/661ec70c7474/ADVS-6-1801664-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/12d5a302a464/ADVS-6-1801664-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/84fa2c6eb1c9/ADVS-6-1801664-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/85338434ea44/ADVS-6-1801664-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/9b7e2707b3c5/ADVS-6-1801664-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/487b2cfde273/ADVS-6-1801664-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/b0578b7cedeb/ADVS-6-1801664-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/6b5719eaab85/ADVS-6-1801664-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/4fd945c6505b/ADVS-6-1801664-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/70c97860b735/ADVS-6-1801664-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/06ee8c88e11f/ADVS-6-1801664-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/4b526dfcf7ab/ADVS-6-1801664-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/7562371b2f3a/ADVS-6-1801664-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/42cfa6e3fd1e/ADVS-6-1801664-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/7bbe6374172d/ADVS-6-1801664-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/e63cf272edc8/ADVS-6-1801664-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/80211970e90b/ADVS-6-1801664-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/b76c019c39c0/ADVS-6-1801664-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/bd6f89e196a1/ADVS-6-1801664-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/dc42ddce2d6a/ADVS-6-1801664-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/cd7cbf7f5890/ADVS-6-1801664-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/661ec70c7474/ADVS-6-1801664-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/12d5a302a464/ADVS-6-1801664-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/84fa2c6eb1c9/ADVS-6-1801664-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/85338434ea44/ADVS-6-1801664-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4666/6702654/9b7e2707b3c5/ADVS-6-1801664-g021.jpg

相似文献

[1]
Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?

Adv Sci (Weinh). 2019-6-14

[2]
Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues.

Adv Mater. 2016-12-14

[3]
Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels.

ACS Appl Mater Interfaces. 2019-2-1

[4]
Self-Healing Hydrogels.

Adv Mater. 2016-8-4

[5]
Designing self-healing hydrogels for biomedical applications.

Mater Horiz. 2023-10-2

[6]
Enzyme-Regulated Healable Polymeric Hydrogels.

ACS Cent Sci. 2020-9-23

[7]
Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network.

Int J Biol Macromol. 2021-3-1

[8]
Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications.

Mater Horiz. 2021-6-1

[9]
Highly stretchable, self-healable and adhesive, thermal responsive conductive hydrogel loading nanocellulose complex for a flexible sensor.

Int J Biol Macromol. 2023-8-30

[10]
A self-healable and tough nanocomposite hydrogel crosslinked by novel ultrasmall aluminum hydroxide nanoparticles.

Nanoscale. 2017-10-19

引用本文的文献

[1]
Self-Healing, Electroconductive Hydrogels for Wound Healing Applications.

Gels. 2025-8-8

[2]
Innovations in hydrogel therapies for diabetic wound healing: bridging the gap between pathophysiology and clinical application.

Burns Trauma. 2025-4-9

[3]
Recent Advancements in Smart Hydrogel-Based Materials in Cartilage Tissue Engineering.

Materials (Basel). 2025-5-31

[4]
Neuroangiogenesis potential of mesenchymal stem cell extracellular vesicles in ischemic stroke conditions.

Cell Commun Signal. 2025-6-7

[5]
Self-Maintainable Electronic Materials with Skin-Like Characteristics Enabled by Graphene-PEDOT:PSS Fillers.

Adv Sci (Weinh). 2025-7

[6]
A self-healing radiopaque hyaluronic acid hydrogel as a new injectable biomaterial for precision medicine in osteoarthritis.

Theranostics. 2025-3-10

[7]
Organo-Hydrogel Electrolytes with Versatile Environmental Adaptation for Advanced Flexible Aqueous Energy Storage Devices.

Small Sci. 2023-4-5

[8]
3D-Printed Hydrogels from Natural Polymers for Biomedical Applications: Conventional Fabrication Methods, Current Developments, Advantages, and Challenges.

Gels. 2025-3-9

[9]
4D fabrication of shape-changing systems for tissue engineering: state of the art and perspectives.

Prog Addit Manuf. 2025

[10]
Toward Intelligent Materials with the Promise of Self-Healing Hydrogels in Flexible Devices.

Polymers (Basel). 2025-2-19

本文引用的文献

[1]
Bioinspired Self-Healing Hydrogel Based on Benzoxaborole-Catechol Dynamic Covalent Chemistry for 3D Cell Encapsulation.

ACS Macro Lett. 2018-8-21

[2]
Poly(vinyl alcohol) Hydrogel Can Autonomously Self-Heal.

ACS Macro Lett. 2012-11-20

[3]
Toward Self-Healing Hydrogels Using One-Pot Thiol-Ene Click and Borax-Diol Chemistry.

ACS Macro Lett. 2015-7-21

[4]
Boronic Acid-Based Hydrogels Undergo Self-Healing at Neutral and Acidic pH.

ACS Macro Lett. 2015-2-17

[5]
3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.

ACS Biomater Sci Eng. 2016-10-10

[6]
Selective Proteolytic Degradation of Guest-Host Assembled, Injectable Hyaluronic Acid Hydrogels.

ACS Biomater Sci Eng. 2015-4-13

[7]
Self-healing boronic acid-based hydrogels for 3D co-cultures.

ACS Macro Lett. 2018-9-18

[8]
An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair.

J Mater Chem B. 2017-5-28

[9]
Robust and self-healable nanocomposite physical hydrogel facilitated by the synergy of ternary crosslinking points in a single network.

J Mater Chem B. 2016-10-7

[10]
Mussel-inspired injectable supramolecular and covalent bond crosslinked hydrogels with rapid self-healing and recovery properties via a facile approach under metal-free conditions.

J Mater Chem B. 2016-11-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索