Suppr超能文献

铁磁体/超导体混合磁子超材料

Ferromagnet/Superconductor Hybrid Magnonic Metamaterials.

作者信息

Golovchanskiy Igor A, Abramov Nikolay N, Stolyarov Vasily S, Dzhumaev Pavel S, Emelyanova Olga V, Golubov Alexander A, Ryazanov Valery V, Ustinov Alexey V

机构信息

Moscow Institute of Physics and Technology National Research University 9 Institutskiy per. Dolgoprudny 141700 Moscow Region Russia.

National University of Science and Technology MISIS 4 Leninsky prosp. 119049 Moscow Russia.

出版信息

Adv Sci (Weinh). 2019 Jul 6;6(16):1900435. doi: 10.1002/advs.201900435. eCollection 2019 Aug 21.

Abstract

In this work, a class of metamaterials is proposed on the basis of ferromagnet/superconductor hybridization for applications in magnonics. These metamaterials comprise of a ferromagnetic magnon medium that is coupled inductively to a superconducting periodic microstructure. Spectroscopy of magnetization dynamics in such hybrid evidences formation of areas in the medium with alternating dispersions for spin wave propagation, which is the basic requirement for the development of metamaterials known as magnonic crystals. The spectrum allows for derivation of the impact of the superconducting structure on the dispersion: it takes place due to a diamagnetic response of superconductors on the external and stray magnetic fields. In addition, the spectrum displays a dependence on the superconducting critical state of the structure: the Meissner and the mixed states of a type II superconductor are distinguished. This dependence hints toward nonlinear response of hybrid metamaterials on the magnetic field. Investigation of the spin wave dispersion in hybrid metamaterials shows formation of allowed and forbidden bands for spin wave propagation. The band structures are governed by the geometry of spin wave propagation: in the backward volume geometry the band structure is conventional, while in the surface geometry the band structure is nonreciprocal and is formed by indirect band gaps.

摘要

在这项工作中,基于铁磁体/超导体混合结构提出了一类用于磁子学应用的超材料。这些超材料由铁磁磁振子介质组成,该介质通过电感耦合到超导周期性微结构。这种混合结构中磁化动力学的光谱表明,介质中形成了具有交替色散的区域用于自旋波传播,这是被称为磁子晶体的超材料发展的基本要求。该光谱允许推导超导结构对色散的影响:这是由于超导体对外加磁场和杂散磁场的抗磁响应而发生的。此外,光谱显示出对结构超导临界状态的依赖性:区分了II型超导体的迈斯纳态和混合态。这种依赖性暗示了混合超材料对磁场的非线性响应。对混合超材料中自旋波色散的研究表明,形成了自旋波传播的允许带和禁带。能带结构由自旋波传播的几何形状决定:在反向体几何结构中,能带结构是常规的,而在表面几何结构中,能带结构是非互易的,由间接带隙形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/460d/6702653/3fd18caf2dbe/ADVS-6-1900435-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验