Szulc Krzysztof, Tacchi Silvia, Hierro-Rodríguez Aurelio, Díaz Javier, Gruszecki Paweł, Graczyk Piotr, Quirós Carlos, Markó Daniel, Martín José Ignacio, Vélez María, Schmool David S, Carlotti Giovanni, Krawczyk Maciej, Álvarez-Prado Luis Manuel
Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
Istituto Officina dei Materiali del CNR (CNR-IOM), Sede Secondaria di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia, Italy.
ACS Nano. 2022 Sep 27;16(9):14168-14177. doi: 10.1021/acsnano.2c04256. Epub 2022 Aug 31.
Reconfigurable magnetization textures offer control of spin waves with promising properties for future low-power beyond-CMOS systems. However, materials with perpendicular magnetic anisotropy (PMA) suitable for stable magnetization-texture formation are characterized by high damping, which limits their applicability in magnonic devices. Here, we propose to overcome this limitation by using hybrid structures, i.e., a PMA layer magnetostatically coupled to a low-damping soft ferromagnetic film. We experimentally show that a periodic stripe-domain texture from a PMA layer is imprinted upon the soft layer and induces a nonreciprocal dispersion relation of the spin waves confined to the low-damping film. Moreover, an asymmetric bandgap features the spin-wave band diagram, which is a clear demonstration of collective spin-wave dynamics, a property characteristic for magnonic crystals with broken time-reversal symmetry. The composite character of the hybrid structure allows for stabilization of two magnetic states at remanence, with parallel and antiparallel orientation of net magnetization in hard and soft layers. The states can be switched using a low external magnetic field; therefore, the proposed system obtains an additional functionality of state reconfigurability. This study offers a link between reconfigurable magnetization textures and low-damping spin-wave dynamics, providing an opportunity to create miniaturized, programmable, and energy-efficient signal processing devices operating at high frequencies.
可重构的磁化纹理能够控制自旋波,其具有的特性有望应用于未来的低功耗超越互补金属氧化物半导体(CMOS)系统。然而,适用于形成稳定磁化纹理的具有垂直磁各向异性(PMA)的材料具有高阻尼特性,这限制了它们在磁子器件中的应用。在此,我们提议通过使用混合结构来克服这一限制,即一个PMA层与一个低阻尼软铁磁膜进行静磁耦合。我们通过实验表明,PMA层的周期性条纹畴纹理被印刻在软层上,并在局限于低阻尼膜中的自旋波中诱导出非互易色散关系。此外,自旋波能带图具有不对称带隙,这清楚地展示了集体自旋波动力学,这是具有破缺时间反演对称性的磁子晶体的一个特性。混合结构的复合特性使得在剩余磁化强度下可以稳定两种磁状态,硬层和软层中的净磁化强度分别具有平行和反平行取向。这些状态可以使用低外部磁场进行切换;因此,所提出的系统获得了状态可重构的附加功能。这项研究建立了可重构磁化纹理与低阻尼自旋波动力学之间的联系,为创建在高频下运行的小型化、可编程且节能的信号处理设备提供了机会。