Tanabe Yuki, Kido Teruhito, Kurata Akira, Kouchi Takanori, Hosokawa Takaaki, Nishiyama Hikaru, Kawaguchi Naoto, Kido Tomoyuki, Uetani Teruyoshi, Mochizuki Teruhito
From the Departments of Radiology.
Cardiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan.
J Comput Assist Tomogr. 2019 Sep/Oct;43(5):811-816. doi: 10.1097/RCT.0000000000000914.
Knowledge-based iterative model reconstruction (IMR) yields diagnostically acceptable image quality in low-dose static computed tomography (CT). We aimed to evaluate the feasibility of IMR in dynamic myocardial computed tomography perfusion (CTP).
We enrolled 24 patients who underwent stress dynamic CTP using a 256-slice CT. Images were reconstructed using filtered back projection (FBP), hybrid IR, and IMR. Image quality and hemodynamic parameters were compared among three algorithms.
Qualitative image quality and contrast-to-noise ratio were significantly higher by IMR than by FBP or hybrid IR (visual score: 4.1 vs. 3.0 and 3.5; contrast-to-noise ratio: 12.4 vs. 6.6 and 8.4; P < 0.05). No significant difference was observed among algorithms in CTP-derived myocardial blood flow (1.68 vs. 1.73 and 1.70 mL/g/min).
The use of knowledge-based iterative model reconstruction improves image quality without altering hemodynamic parameters in low-dose dynamic CTP, compared with FBP or hybrid IR.
基于知识的迭代模型重建(IMR)在低剂量静态计算机断层扫描(CT)中可产生诊断可接受的图像质量。我们旨在评估IMR在动态心肌计算机断层扫描灌注(CTP)中的可行性。
我们纳入了24例接受256层CT应力动态CTP检查的患者。使用滤波反投影(FBP)、混合迭代重建(IR)和IMR对图像进行重建。比较三种算法的图像质量和血流动力学参数。
IMR的定性图像质量和对比噪声比显著高于FBP或混合IR(视觉评分:4.1对3.0和3.5;对比噪声比:12.4对6.6和8.4;P<0.05)。在CTP衍生的心肌血流量方面,各算法之间未观察到显著差异(1.68对1.73和1.70 mL/g/min)。
与FBP或混合IR相比,在低剂量动态CTP中使用基于知识的迭代模型重建可提高图像质量,且不改变血流动力学参数。