Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City, Saitama, Japan.
PLoS One. 2019 Aug 27;14(8):e0221164. doi: 10.1371/journal.pone.0221164. eCollection 2019.
Knock-in (KI) gene targeting can be employed for a wide range of applications in stem cell research. However, vectors for KI require multiple complicated processes for construction, including multiple times of digestion/ligation steps and extensive restriction mapping, which has imposed limitations for the robust applicability of KI gene targeting. To circumvent this issue, here we introduce versatile and systematic methods for generating KI vectors by molecular cloning. In this approach, we employed the Multisite Gateway technology, an efficient in vitro DNA recombination system using proprietary sequences and enzymes. KI vector construction exploiting these methods requires only efficient steps, such as PCR and recombination, enabling robust KI gene targeting. We show that combinatorial usage of the KI vectors generated using this method and site-specific nucleases enabled the precise integration of fluorescent protein genes in multiple loci of human and common marmoset (marmoset; Callithrix jacchus) pluripotent stem cells. The methods described here will facilitate the usage of KI technology and ultimately help to accelerate stem cell research.
基因敲入(KI)基因靶向技术可广泛应用于干细胞研究。然而,用于 KI 的载体在构建时需要多个复杂的过程,包括多次消化/连接步骤和广泛的限制图谱分析,这对 KI 基因靶向的广泛适用性提出了限制。为了解决这个问题,我们在这里介绍了通过分子克隆生成 KI 载体的通用且系统的方法。在这种方法中,我们采用了多克隆位点 Gateway 技术,这是一种利用专有的序列和酶的高效体外 DNA 重组系统。利用这些方法构建 KI 载体仅需要高效的步骤,如 PCR 和重组,从而实现稳健的 KI 基因靶向。我们表明,使用这种方法生成的 KI 载体与位点特异性核酸酶的组合使用,可以在人源和普通狨猴(狨猴;Callithrix jacchus)多能干细胞的多个基因座中精确整合荧光蛋白基因。这里描述的方法将促进 KI 技术的应用,并最终有助于加速干细胞研究。