Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel.
Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
Proc Biol Sci. 2019 Aug 28;286(1909):20191278. doi: 10.1098/rspb.2019.1278.
The muscular-hydrostat configuration of octopus arms allows high manoeuvrability together with the efficient motor performance necessary for its multitasking abilities. To control this flexible and hyper-redundant system the octopus has evolved unique strategies at the various levels of its brain-to-body organization. We focus here on the arm neuromuscular junction (NMJ) and excitation-contraction (E-C) properties of the arm muscle cells. We show that muscle cells are cholinergically innervated at single eye-shaped locations where acetylcholine receptors (AChR) are concentrated, resembling the vertebrate neuromuscular endplates. Na and K contribute nearly equally to the ACh-activated synaptic current mediating membrane depolarization, thereby activating voltage-dependent L-type Ca channels. We show that cell contraction can be mediated directly by the inward Ca current and also indirectly by calcium-induced calcium release (CICR) from internal stores. Indeed, caffeine-induced cell contraction and immunohistochemical staining revealed the presence and close association of dihydropyridine (DHPR) and ryanodine (RyR) receptor complexes, which probably mediate the CICR. We suggest that the dynamics of octopus arm contraction can be controlled in two ways; motoneurons with large synaptic inputs activate vigorous contraction via activation of the two routs of Ca induced contraction, while motoneurons with lower-amplitude inputs may regulate a graded contraction through frequency-dependent summation of EPSP trains that recruit the CICR. Our results thus suggest that these motoneuronal pools are likely to be involved in the activation of different E-C coupling modes, thus enabling a dynamics of muscles activation appropriate for various tasks such as stiffening versus motion generation.
章鱼手臂的肌肉-液压配置允许其具有高度的机动性,同时也具备高效的运动性能,这是其多任务能力所必需的。为了控制这种灵活和超冗余的系统,章鱼在其大脑-身体组织的各个层次上进化出了独特的策略。我们在这里关注的是章鱼手臂的神经肌肉接头(NMJ)和肌肉细胞的兴奋-收缩(E-C)特性。我们表明,肌肉细胞在单个眼睛形状的位置被胆碱能神经支配,在这里乙酰胆碱受体(AChR)集中,类似于脊椎动物的神经肌肉终板。钠和钾对乙酰胆碱激活的突触电流介导的膜去极化几乎同样重要,从而激活电压依赖性 L 型钙通道。我们表明,细胞收缩可以直接由内向钙电流介导,也可以通过内部储存的钙诱导钙释放(CICR)间接介导。事实上,咖啡因诱导的细胞收缩和免疫组织化学染色显示存在并密切相关的二氢吡啶(DHPR)和肌质网(RyR)受体复合物,它们可能介导 CICR。我们认为,章鱼手臂收缩的动力学可以通过两种方式进行控制;具有大突触输入的运动神经元通过激活两种钙诱导收缩途径来激活强烈的收缩,而具有较低幅度输入的运动神经元可能通过依赖频率的 EPSP 列车的总和来调节分级收缩,从而招募 CICR。因此,我们的研究结果表明,这些运动神经元池可能参与了不同的 E-C 偶联模式的激活,从而使肌肉激活的动力学适应各种任务,例如僵硬与运动产生。